Constructing and Analyzing Metabolic Flux Models of Microbial Communities

  • José P. Faria
  • Tahmineh Khazaei
  • Janaka N. Edirisinghe
  • Pamela Weisenhorn
  • Samuel M. D. Seaver
  • Neal Conrad
  • Nomi Harris
  • Matthew DeJongh
  • Christopher S. Henry
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Here we provide a broad overview of current research in modeling the growth and behavior of microbial communities, while focusing primarily on metabolic flux modeling techniques, including the reconstruction of individual species models, reconstruction of mixed-bag models, and reconstruction of multi-species models. We describe how flux balance analysis may be applied with these various model types to explore the interactions of a microbial community with its environment, as well as the interactions of individual species with each other. We demonstrate all discussed model reconstruction and analysis approaches using the Department of Energy’s Systems Biology Knowledgebase (KBase), constructing and importing genome-scale metabolic models of Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii, and subsequently combining them into a community model of the gut microbiome. We also use KBase to explore how these species interact with each other and with the gut environment, exploring the trade-offs in information provided by applying each metabolic flux modeling approach. Overall, we conclude that no single approach is better than the others, and often there is much to be gained by applying multiple approaches synergistically when exploring the ecology of a microbial community.

Keywords:

Bacteroides thetaiotaomicron Ecology Faecalibacterium prausnitzii Flux balance analysis Genome-scale modeling Microbial communities 

References

  1. 1.
    Heinken A et al (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4(1):28–40CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Korem T et al (2015) Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349(6252):1101–1106CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mouser PJ et al (2009) Quantifying expression of Geobacter spp. oxidative stress genes in pure culture and during in situ uranium bioremediation. ISME J 3(4):454–465CrossRefPubMedGoogle Scholar
  4. 4.
    Chen Y et al (2015) Synthetic biology. Emergent genetic oscillations in a synthetic microbial consortium. Science 349(6251):986–989CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    De Roy K et al (2014) Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ Microbiol 16(6):1472–1481CrossRefPubMedGoogle Scholar
  6. 6.
    Pandhal J, Noirel J (2014) Synthetic microbial ecosystems for biotechnology. Biotechnol Lett 36(6):1141–1151CrossRefPubMedGoogle Scholar
  7. 7.
    National Research Council (U.S.). Committee on Metagenomics: Challenges and Functional Applications. and National Academies Press (U.S.) (2007) The new science of metagenomics : revealing the secrets of our microbial planet. National Academies Press, Washington, DC, 158 ppGoogle Scholar
  8. 8.
    Larsen PE et al (2011) Predicted relative metabolomic turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. Microb Inform Exp 1(1):4CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Meyer F et al (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xia F, Stevens RL (2012) Kiki: Terabase metagenome assembly with massively parallel computers. In: GitHub. https://github.com/geneassembly/kiki
  11. 11.
    Borenstein E et al (2008) Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci U S A 105(38):14482–14487CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Brown CT et al (2015) Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523(7559):208–211CrossRefPubMedGoogle Scholar
  13. 13.
    Sharon I et al (2013) Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res 23(1):111–120CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Albertsen M et al (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31(6):533–538CrossRefPubMedGoogle Scholar
  15. 15.
    Carr R, Shen-Orr SS, Borenstein E (2013) Reconstructing the genomic content of microbiome taxa through shotgun metagenomic deconvolution. PLoS Comput Biol 9(10), e1003292CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Freilich S et al (2009) Metabolic-network-driven analysis of bacterial ecological strategies. Genome Biol 10(6):R61CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Harcombe WR et al (2014) Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep 7(4):1104–1115CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Allison SD, Martiny JB (2008) Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105(Suppl 1):11512–11519CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shade A et al (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Stolyar S et al (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chiu HC, Levy R, Borenstein E (2014) Emergent biosynthetic capacity in simple microbial communities. PLoS Comput Biol 10(7), e1003695CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Klitgord N, Segre D (2010) Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 6(11), e1001002CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Levy R, Borenstein E (2013) Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc Natl Acad Sci U S A 110(31):12804–12809CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Heinken A, Thiele I (2015) Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes 6(2):120–130CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Aziz RK et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Henry CS et al (2010) High-throughput generation, optimization, and analysis of genome-scale metabolic models. Nat Biotechnol 1672:1–6Google Scholar
  28. 28.
    Devoid S et al (2013) Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED. Methods Mol Biol 985:17–45CrossRefPubMedGoogle Scholar
  29. 29.
    Thiele I, Palsson B (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protocols 5:93–121CrossRefPubMedGoogle Scholar
  30. 30.
    Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248Google Scholar
  31. 31.
    Agren R et al (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3), e1002980CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dias O et al (2015) Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res 43(8):3899–3910CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Delcher AL et al (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hyatt D et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kumar VS, Dasika MS, Maranas CD (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8:212CrossRefGoogle Scholar
  36. 36.
    Kumar VS, Maranas CD (2009) GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 5(3), e1000308CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Reed JL et al (2006) Systems approach to refining genome annotation. Proc Natl Acad Sci USA 103(46):17480–17484CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Henry CS et al (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol 10(6):R69CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tanaka K et al (2013) Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res 41:687–699Google Scholar
  40. 40.
    Allison SD (2012) A trait-based approach for modelling microbial litter decomposition. Ecol Lett 15(9):1058–1070CrossRefPubMedGoogle Scholar
  41. 41.
    Freilich S et al (2011) Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun 2:589CrossRefPubMedGoogle Scholar
  42. 42.
    Carr R, Borenstein E (2012) NetSeed: a network-based reverse-ecology tool for calculating the metabolic interface of an organism with its environment. Bioinformatics 28(5):734–735CrossRefPubMedGoogle Scholar
  43. 43.
    Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19(2):125–130CrossRefPubMedGoogle Scholar
  44. 44.
    Lee DH, Palsson BO (2010) Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-1,2-propanediol. Appl Environ Microbiol 76(13):4158–4168Google Scholar
  45. 45.
    Schellenberger J, Palsson BO (2009) Use of randomized sampling for analysis of metabolic networks. J Biol Chem 284(9):5457–5461CrossRefPubMedGoogle Scholar
  46. 46.
    Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276CrossRefPubMedGoogle Scholar
  47. 47.
    Kim MK, Lun DS (2014) Methods for integration of transcriptomic data in genome-scale metabolic models. Comput Struct Biotechnol J 11(18):59–65CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Seaver SM et al (2015) Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. Front Plant Sci 6:142CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hansen JJ et al (2012) The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen. PLoS One 7(8), e42645CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Abubucker S et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8(6), e1002358CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Dal’Molin CG et al (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154(4):1871–1885Google Scholar
  52. 52.
    Bordbar A et al (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6:422Google Scholar
  53. 53.
    Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8(2), e1002363CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhuang K et al (2011) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305–316Google Scholar
  55. 55.
    Gomez JA, Hoffner K, Barton PI (2014) DFBAlab: a fast and reliable MATLAB code for dynamic flux balance analysis. BMC Bioinformatics 15:409CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hoffner K, Harwood SM, Barton PI (2013) A reliable simulator for dynamic flux balance analysis. Biotechnol Bioeng 110(3):792–802CrossRefPubMedGoogle Scholar
  57. 57.
    Salimi F, Zhuang K, Mahadevan R (2010) Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol J 5(7):726–738CrossRefPubMedGoogle Scholar
  58. 58.
    Hanly TJ, Urello M, Henson MA (2012) Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Appl Microbiol Biotechnol 93(6):2529–2541CrossRefPubMedGoogle Scholar
  59. 59.
    Hanly TJ, Henson MA (2011) Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng 108(2):376–385CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • José P. Faria
    • 1
    • 2
  • Tahmineh Khazaei
    • 3
  • Janaka N. Edirisinghe
    • 1
    • 4
  • Pamela Weisenhorn
    • 4
    • 7
  • Samuel M. D. Seaver
    • 1
    • 4
  • Neal Conrad
    • 4
  • Nomi Harris
    • 5
  • Matthew DeJongh
    • 6
  • Christopher S. Henry
    • 1
    • 4
  1. 1.Computation InstituteUniversity of ChicagoChicagoUSA
  2. 2.Computing, Environment and Life Sciences, Argonne National LaboratoryArgonneUSA
  3. 3.Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonneUSA
  5. 5.Lawrence Berkley National LabBerkleyUSA
  6. 6.Computer Science DepartmentHope CollegeHollandUSA
  7. 7.BiosciencesArgonne National LaboratoryArgonneUSA

Personalised recommendations