Skip to main content

Geological and Hydrogeological Characterization of Subsurface

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Investigations on the origin and fate of hydrocarbons in the subsurface heavily rely on information on the geological and hydrogeological characteristics of the subsurface. This chapter presents different methods to characterize the geological structure of the subsurface, to quantify its hydraulic conductivity, to determine groundwater flow velocity and to characterize the contaminant distribution. The methods range from simple field tests that can be rapidly implemented to advanced methods that provide detailed information on subsurface properties and contaminant distribution at a high spatial resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Weight WD (2008) Hydrogeology field manual. McGraw-Hill, New York

    Google Scholar 

  2. Hadley PW, Newell C (2014) The new potential for understanding groundwater contaminant transport. Ground Water 52:174–186

    Article  CAS  PubMed  Google Scholar 

  3. Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, Slater LD (2015) The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res 51:3837–3866

    Article  PubMed  PubMed Central  Google Scholar 

  4. Keys WS (1990) Borehole geophysics applied to ground-water investigations, Techniques of water-resources investigations of the United States Geological Survey. USGS, Washington, p. Chapter E2

    Google Scholar 

  5. Wonik T, Hinsby K (2006) Borehole logging in hydrogeology. In: Kirsch R, Rumpel H-M, Scheer W, Wiederhold H (eds) Groundwater resources in buried valleys – a challenge for geosciences. Leibnitz Institute for Applied Geosciences, Hannover, pp 107–122

    Google Scholar 

  6. Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156

    Article  Google Scholar 

  7. Atekwana EA, Atekwana EA (2010) Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surv Geophys 31:247–288

    Article  Google Scholar 

  8. Harrington GA, Hendry MJ (2006) Using direct-push EC logging to delineate heterogeneity in a clay-rich aquitard. Ground Water Monit Rem 26:92–100

    Article  Google Scholar 

  9. Schulmeister MK, Butler JJ, Healey JM, Zheng L, Wysocki DA, McCall GW (2003) Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization. Ground Water Monit Rem 23:52–62

    Article  Google Scholar 

  10. Sellwood SM, Healey JM, Birk S, Butler JJ (2005) Direct-push hydrostratigraphic profiling: coupling electrical logging and slug tests. Ground Water 43:19–29

    Article  CAS  PubMed  Google Scholar 

  11. Butler JJ, Dietrich P, Wittig V, Christy T (2007) Characterizing hydraulic conductivity with the direct-push permeameter. Ground Water 45:409–419

    Article  CAS  PubMed  Google Scholar 

  12. Butler JJ, Healey JM, McCall GW, Garnett EJ, Loheide SP (2002) Hydraulic tests with direct-push equipment. Ground Water 40:25–36

    Article  CAS  PubMed  Google Scholar 

  13. Dietrich P, Butler JJ, Faiss K (2008) A rapid method for hydraulic profiling in unconsolidated formations. Ground Water 46:323–328

    Article  CAS  PubMed  Google Scholar 

  14. Zschornack L, Bohling GC, Butler JJ Jr, Dietrich P (2013) Hydraulic profiling with the direct-push permeameter: assessment of probe configuration and analysis methodology. J Hydrol 496:195–204

    Article  Google Scholar 

  15. Adamson D, Chapman S, Mahler N, Newell C, Parker B, Pitkin S, Rossi M, Singletary M (2014) Membrane interface probe protocol for contaminants in low-permeability zones. Groundwater 52:550–565

    Article  CAS  Google Scholar 

  16. Bumberger J, Radny D, Berndsen A, Goblirsch T, Flachowsky J, Dietrich P (2012) Carry-over effects of the membrane interface probe. Ground Water 50:578–584

    Article  CAS  PubMed  Google Scholar 

  17. Geoprobe (2015) Geoprobe membrane interface (MIP). Standard operating procedure. Technical Bulletin No. MK3010, Geoprobe Systems, Salina, p 39

    Google Scholar 

  18. Köber R, Hornbruch G, Leven C, Tischer L, Grossmann J, Dietrich P, Weiss H, Dahmke A (2009) Evaluation of combined direct-push methods used for aquifer model generation. Ground Water 47:536–546

    Article  PubMed  Google Scholar 

  19. Kruseman GP, de Ridder NA (2000) Analysis and evaluation of pumping test data. International Institute for Land Reclamation and Improvement, Wageningen

    Google Scholar 

  20. Gottlieb J, Dietrich P (1995) Identification of permeability distribution in soil by hydraulic tomography. Inverse Probe 11:353–360

    Article  Google Scholar 

  21. Yeh TCJ, Liu SY (2000) Hydraulic tomography: development of a new aquifer test method. Water Resour Res 36:2095–2105

    Article  Google Scholar 

  22. Bohling GC, Butler JJ Jr (2010) Inherent limitations of hydraulic tomography. Ground Water 48:809–824

    Article  CAS  PubMed  Google Scholar 

  23. Labaky W, Devlin JF, Gillham RW (2009) Field comparison of the point velocity probe with other groundwater velocity measurement methods. Water Resour Res 45, W00D30

    Article  Google Scholar 

  24. Drost W, Klotz D, Koch A, Moser H, Neumaier F, Rauert W (1968) Point dilution methods of investigating ground water flow by means of radioisotopes. Water Resour Res 4:125–146

    Article  Google Scholar 

  25. Flynn RM, Schnegg PA, Costa R, Mallen G, Zwahlen F (2005) Identification of zones of preferential groundwater tracer transport using a mobile downhole fluorometer. Hydrogeol J 13:366–377

    Article  CAS  Google Scholar 

  26. Hatfield K, Annable M, Cho JH, Rao PSC, Klammler H (2004) A direct passive method for measuring water and contaminant fluxes in porous media. J Contam Hydrol 75:155–181

    Article  CAS  PubMed  Google Scholar 

  27. Klammler H, Hatfield K, Annable MD (2007) Concepts for measuring horizontal groundwater flow directions using the passive flux meter. Adv Water Resour 30:984–997

    Article  Google Scholar 

  28. Kearl PM (1997) Observations of particle movement in a monitoring well using the colloidal borescope. J Hydrol 200:323–344

    Article  Google Scholar 

  29. Labaky W, Devlin JF, Gillham RW (2007) Probe for measuring groundwater velocity at the centimeter scale. Environ Sci Technol 41:8453–8458

    Article  CAS  PubMed  Google Scholar 

  30. Cherry JA, Gilham RW, Anderson EG, Johnson PE (1983) Hydrogeological studies of a sand aquifer at an abondoned landfill: 2. Groundwater monitoring devices. J Hydrol 63:31–49

    Article  CAS  Google Scholar 

  31. Ducommun P, Boutsiadou X, Hunkeler D (2013) Direct-push multilevel sampling for unconsolidated aquifers. Hydrogeol J 21:1901–1908

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hunkeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Hunkeler, D. (2016). Geological and Hydrogeological Characterization of Subsurface. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_211

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_211

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53116-7

  • Online ISBN: 978-3-662-53118-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics