High Pressure Cultivation of Hydrocarbonoclastic Aerobic Bacteria

  • Francesco Smedile
  • Violetta La Cono
  • Maria Genovese
  • Giovacchino Ruggeri
  • Renata Denaro
  • Francesca Crisafi
  • Laura Giuliano
  • Michail M. Yakimov
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Hydrocarbon-degrading microorganisms capable to use hydrocarbons as a sole source of carbon and energy are widely distributed in marine environments (Yakimov et al., Curr Opin Biotechnol 18:257–266, 2007) occupying practically all habitats, including those characterized by extremely high hydrostatic pressure, i.e. deep-sea abysses and ocean bottoms. From April to July 2010, 779 million litres of oil were released into the Gulf of Mexico during the explosion of the drilling rig Deepwater Horizon (DWH) (Atlas and Hazen, Environ Sci Technol 45:6709–6715, 2011). This event, described as the largest marine oil spill in human history (Schedler et al., AMB Express 4:77, 2014), occurred at the depth of 1,500 m, corresponding to a hydrostatic pressure of 15 MPa. Substantial bacterial blooms were observed in the bathypelagic layer of the water column at the depth of approximately 1,000–1,200 m, indicating that indigenous hydrocarbon-degrading bacteria were enriched by the released crude oil and methane (Bælum et al., Environ Microbiol 14:2405–2416, 2012).

This dramatic event pointed to a very important issue that has been currently overlooked. Indeed, there are vanishingly few available publications related to studies on physiology and cultivation of hydrocarbon-degrading microorganisms under elevated hydrostatic pressure. Although pressure-induced differences in growth and hydrocarbon utilization were highlighted elsewhere (Schedler et al., AMB Express 4:77, 2014; Bælum et al., Environ Microbiol 14:2405–2416, 2012; Grossi et al., Environ Microbiol 12:2020–2033, 2010; Schwarz et al., Appl Microbiol 28:982–986, 1974; Schwarz et al., Can J Microbiol 21:682–687, 1975), comprehensive analyses of bacterial degradation of hydrocarbons conducted under high pressure are yet to be performed (Grossi et al., Environ Microbiol 12:2020–2033, 2010; Schwarz et al., Appl Microbiol 28:982–986, 1974; Schwarz et al., Can J Microbiol 21:682–687, 1975). Thus, the study of the fate of hydrocarbons once released in the ocean shows that the effect of pressure cannot be neglected. This chapter includes the main guidelines on how to incubate hydrocarbon-degrading bacteria under high hydrostatic pressure.

Keywords:

Biodegradation High pressure Hydrocarbons Pressure laboratory 

Notes

Acknowledgements

This work was supported by research fund from European Commission’s Program under MicroB3 Project (Contract FP7-OCEAN.2011-2-287589). This work was supported by research fund from European Commission’s Program under the research project Kill*Spill ‘Integrated Biotechnological Solutions for Combating Marine Oil Spills’ (FP7-KBBE-2012.3.5-01-4 Project 312139). We thank Dr Gina La Spada and Enzo Messina for their excellent technical support.

References

  1. 1.
    Jannasch HW, Taylor CD (1984) Deep sea microbiology. Annu Rev Microbiol 38:487–514CrossRefPubMedGoogle Scholar
  2. 2.
    Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochem Biophys Acta 1595:367–381PubMedGoogle Scholar
  3. 3.
    Schedler M, Hiessl R, Valladares Juárez AG, Gust G, Müller R (2014) Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4:77. doi: 10.1186/s13568-014-0077-0 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman H-Y, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14:2405–2416. doi: 10.1111/j.1462-2920.2012.02780.x CrossRefPubMedGoogle Scholar
  5. 5.
    Grossi V, Yakimov MM, Al Ali B, Tapilatu Y, Cuny P, Goutx M, La Cono V, Giuliano L, Tamburini C (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5. Environ Microbiol 12:2020–2033. doi: 10.1111/j.1462-2920.2010.02213.x CrossRefPubMedGoogle Scholar
  6. 6.
    Schwarz JR, Walker JD, Colwell RR (1974) Deep-sea bacteria: growth and utilization of hydrocarbons at ambient and in situ pressure. Appl Microbiol 28:982–986PubMedPubMedCentralGoogle Scholar
  7. 7.
    Schwarz JR, Walker JD, Colwell RR (1975) Deep-sea bacteria: growth and utilization of n-hexadecane at in situ temperature and pressure. Can J Microbiol 21:682–687CrossRefPubMedGoogle Scholar
  8. 8.
    ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189PubMedPubMedCentralGoogle Scholar
  9. 9.
    Yayanos AA (1995) Microbiology to 10,500 meters in the deep-sea. Annu Rev Microbiol 49:777–805CrossRefPubMedGoogle Scholar
  10. 10.
    Fang J, Zhang L, Bazylinski DA (2010) Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18:413–422CrossRefPubMedGoogle Scholar
  11. 11.
    Kato C (2011) Distribution of piezophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 643–655CrossRefGoogle Scholar
  12. 12.
    Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW (2013) Prokaryotic responses to hydrostatic pressure in the ocean a review. Environ Microbiol 15:1262–1274. doi: 10.1111/1462-2920.12084 CrossRefPubMedGoogle Scholar
  13. 13.
    Lauro FM, Tran K, Vezzi A, Vitulo N, Valle G, Bartlett DH (2008) Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. J Bacteriol 190:1699–1709CrossRefPubMedGoogle Scholar
  14. 14.
    Kato C, Sato T, Abe F, Ohmae E, Tamegai H, Nakasone K et al (2008) Protein adaptation to high-pressure environments. In: Thomas T, Siddiqui KS (eds) Protein adaptation in extremophiles, Molecular anatomy and physiology of proteins series. Nova Science Publisher, New York, pp 167–191Google Scholar
  15. 15.
    Shiller AM, Joung D (2012) Nutrient depletion as a proxy for microbial growth in Deepwater Horizon subsurface oil/gas plumes. Environ Res Lett 7:045301. doi: 10.1088/1748-9326/7/4/045301 CrossRefGoogle Scholar
  16. 16.
    Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715. doi: 10.1021/es2013227 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208. doi: 10.1126/science.1195979 CrossRefPubMedGoogle Scholar
  18. 18.
    Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM, Yvon-Lewis SA, Weber TC (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the Deep Gulf of Mexico. Science 331:312–315. doi: 10.1126/science.1199697 CrossRefPubMedGoogle Scholar
  19. 19.
    Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20292–20297. doi: 10.1073/pnas.1108756108 CrossRefPubMedGoogle Scholar
  20. 20.
    Valentine DL, Mezić I, Maćešić S, Črnjarić-Žic N, Ivić S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Natl Acad Sci U S A 109:20286–20291. doi: 10.1073/pnas.1108820109 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cui Z, Lai Q, Dong C, Shao Z (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 10:2138–2149. doi: 10.1111/j.1462-2920.2008.01637.x CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tapilatu Y, Acquaviva M, Guigue C, Miralles G, Bertrand J-C, Cuny P (2010) Isolation of alkane-degrading bacteria from deep-sea Mediterranean sediments. Lett Appl Microbiol 50:234–236. doi: 10.1111/j.1472-765X.2009.02766.x CrossRefPubMedGoogle Scholar
  23. 23.
    Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10:1948–1963. doi: 10.1111/j.1462-2920.2008.01611.x CrossRefPubMedGoogle Scholar
  24. 24.
    Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266. doi: 10.1016/j.copbio.2007.04.006 CrossRefPubMedGoogle Scholar
  25. 25.
    Gibson DT, Roberts RL, Wells MC, Kobal VM (1973) Oxidation of biphenyl by a Beijerinckia species. Biochem Biophys Res Commun 50:211–219. doi: 10.1016/0006-291X(73)90828-0 CrossRefPubMedGoogle Scholar
  26. 26.
    Lindo-Atichati D, Paris CB, Le Hénaff M, Schedler M, Valladares Juárez AG, Müller (2014) Simulating the effects of droplet size, high-pressure biodegradation, and variable flow rate on the subsea evolution of deep plumes from the Macondo blowout. Deep-Sea Res II Top Stud Oceanogr (in press). doi: 10.1016/j.dsr2.2014.01.011
  27. 27.
    Grossart H-P, Gust G (2009) Hydrostatic pressure affects physiology and community structure of marine bacteria during settling to 4000 m: an experimental approach. Mar Ecol Prog Ser 390:97–104CrossRefGoogle Scholar
  28. 28.
    Tamburini C, Garcin J, Bianchi A (2003) Role of deep-sea bacteria in organic matter mineralization and adaptation to hydrostatic pressure conditions in the NW Mediterranean Sea. Aquat Microb Ecol 32:209–218CrossRefGoogle Scholar
  29. 29.
    Tamburini C, Goutx M, Guigue C, Garel M, Lefèvre D, Charrière B et al (2009) Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep Sea Res Part II Top Stud Oceanogr 56:1533–1546CrossRefGoogle Scholar
  30. 30.
    Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new fresh water prosthecate bacteria. J Bacteriol 95:1942Google Scholar
  31. 31.
    Shelton DR, Tiedje JM (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl Environ Microbiol 48:840–848PubMedPubMedCentralGoogle Scholar
  32. 32.
    Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR et al (2003) Oleispira Antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785. doi: 10.1099/ijs.0.02366-0 CrossRefPubMedGoogle Scholar
  33. 33.
    Martini S, Garel M, Nerini D, Grossi V, Pacton M, Casalot L, Cuny P, Tamburini C (2013) Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200. PLoS One 8(6):e66580. doi: 10.1371/journal.pone.0066580. Print 2013
  34. 34.
    Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetiigen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123. doi: 10.1099/00207713-45-1-116 CrossRefPubMedGoogle Scholar
  35. 35.
    Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459. doi: 10.1126/science.1103341 CrossRefPubMedGoogle Scholar
  36. 36.
    Fine RA and Millero FJ (1973). Compressibility of water as a function of temperature and pressure. J Chem Phys 59(10):5529. Bibcode:1973JChPh..59.5529F. doi: 10.1063/1.1679903
  37. 37.
    Nave R (2007) Bulk elastic properties. HyperPhysics. Georgia State University. Retrieved 26-10-2007Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Francesco Smedile
    • 1
  • Violetta La Cono
    • 1
  • Maria Genovese
    • 1
  • Giovacchino Ruggeri
    • 1
  • Renata Denaro
    • 1
  • Francesca Crisafi
    • 1
  • Laura Giuliano
    • 1
  • Michail M. Yakimov
    • 1
  1. 1.Institute for Coastal Marine Environment, IAMC CNRMessinaItaly

Personalised recommendations