Skip to main content

Enrichment and Isolation of Chloroxyanion-Respiring Hydrocarbon Oxidizers

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Converging lines of research point to chloroxyanion-respiring hydrocarbon oxidizers as an important group of microorganisms that merit expanded isolation and characterization. Respiration of the chloroxyanions perchlorate (ClO4 ) and chlorate (ClO3 ), collectively termed (per)chlorate, is the only non-phototrophic process shown to produce molecular oxygen (O2). Accordingly, strains that respire (per)chlorate while oxidizing hydrocarbons have been of longstanding interest for bioremediation of hydrocarbons in anaerobic environments (Coates et al., Nature 396(6713):730, 1998). Perchlorate also shows promise as a corrective to corrosive sulfidogenesis in oil reservoirs. The perchlorate ion is a putative competitive inhibitor of ATP sulfurylase, a key enzyme in the sulfate reduction pathway (Carlson et al., ISME J 9:1295–1305, 2014); (per)chlorate reduction can be coupled to the oxidation of sulfide into sulfur and sulfate (Gregoire et al., Environ Microbiol Rep 6(6):558–564, 2014); and in reservoirs amended with perchlorate, sulfate-respiring microorganisms could be competitively excluded by perchlorate-respiring hydrocarbon oxidizers (Engelbrektson et al., Frontiers Microbiol 5, 2014; Liebensteiner et al., Frontiers Microbiol 5(428), 2014). The discovery of mesophilic and hyperthermophilic (per)chlorate-reducing microorganisms that can consume hydrocarbons (Carlström et al., Appl Environ Microbiol 81(8):2717–2726, 2015; Coates et al., Nature 411(6841):1039–1043, 2001; Liebensteiner et al., Science 340(6128):85–87, 2013) emphasizes the potential for bioremediation and oil reservoir souring control and provides exciting motivation to characterize additional (per)chlorate-reducing microorganisms from similar environments.

This protocol provides an overview of anaerobic culturing and handling hydrocarbons (reviewed extensively in Davidova and Sulfita, Methods Enzymol 397(05):17–34, 2005) and specific techniques for the enrichment and isolation of chloroxyanion-respiring hydrocarbon oxidizers from several environments of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gregoire P, Engelbrektson A, Hubbard CG, Metlagel Z, Csencsits R, Auer M, Conrad ME, Thieme J, Northrup P, Coates JD (2014) Control of sulfidogenesis through bio-oxidation of H2S coupled to (per)chlorate reduction. Environ Microbiol Rep 6(6):558–564

    Article  CAS  PubMed  Google Scholar 

  2. Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fueled metabolism. Nat Rev Microbiol 2(7):569–580

    Article  CAS  PubMed  Google Scholar 

  3. Clark IC, Melnyk RA, Engelbrektson A, Coates JD (2013) Structure and evolution of chlorate reduction composite transposons. mBio 4(4): e00379-13

    Google Scholar 

  4. Melnyk RA, Engelbrektson A, Clark IC, Carlson HK, Byrne-Bailey K, Coates JD (2011) Identification of a perchlorate reduction genomic island with novel regulatory and metabolic genes. Appl Environ Microbiol 77(20):7401–7404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liebensteiner MG, Pinkse MWH, Schaap PJ, Stams AJM, Lomans BP (2013) Archaeal (per)chlorate reduction at high temperature: an interplay of biotic and abiotic reactions. Science 340(6128):85–87

    Article  CAS  PubMed  Google Scholar 

  6. Martínez-Espinosa RM, Richardson DJ, Bonete MJ (2015) Characterisation of chlorate reduction in the haloarchaeon Haloferax mediterranei. Biochim Biophys Acta Gen Subj 1850(4):587–594

    Article  Google Scholar 

  7. Chaudhuri S, O’Connor S, Gustavson R, Achenbach L, Coates J (2002) Environmental factors that control microbial perchlorate reduction. Appl Environ Microb 68:4425–4430

    Article  CAS  Google Scholar 

  8. Carlström CI, Loutey D, Bauer S, Clark IC, Rohde RA, Iavarone AT, Lucas L, Coates JD (2015) (Per)Chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (Per)Chlorate as an electron acceptor. mBio 6(2):e02287-14

    Google Scholar 

  9. Chakraborty R, O’Connor S, Chan E, Coates J (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl Environ Microbiol 71(12):8649–8655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411(6841):1039–1043

    Article  CAS  PubMed  Google Scholar 

  11. Mehboob F, Junca H, Schraa G, Stams AJM (2009) Growth of Pseudomonas chloritidismutans AW-1T on n-alkanes with chlorate as electron acceptor. Appl Microbiol Biotechnol 83(4):739–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liebensteiner MG, Tsesmetzis N, Stams AJM, Bartholomeus P (2014) Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs. Frontiers Microbiol 5(428)

    Google Scholar 

  13. Liebensteiner MG, Stams AJM, Lomans BP (2014) (Per)chlorate reduction at high temperature: physiological study of Archaeoglobus fulgidus and potential implications for novel souring mitigation strategies. Int Biodeterior Biodegrad 96:216–222

    Article  Google Scholar 

  14. Davidova IA, Suflita JM (2005) Enrichment and isolation of anaerobic hydrocarbon-degrading bacteria. Methods Enzymol 397(05):17–34

    Article  CAS  PubMed  Google Scholar 

  15. Fries MR, Zhou J, Chee-Sanford J, Tiedjel JM (1994) Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol 60(8):2802–2810

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65(12):5234–5241

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Coates J, Woodward J, Allen J, Philp P, Lovley D (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63:3589–3593

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan NCG, Van Doesburg W, Langenhoff AAM, Stams AJM (2006) Benzene degradation coupled with chlorate reduction in a soil column study. Biodegradation 17(2):113–119

    Article  CAS  PubMed  Google Scholar 

  19. Weelink SAB, Tan NCG, Ten Broeke H, Van Den Kieboom C, Van Doesburg W, Langenhoff AAM, Gerritse J, Junca H, Stams AJM (2008) Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor. Appl Environ Microbiol 74(21):6672–6681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carlström CI, Wang O, Melnyk RA, Bauer S, Lee J, Engelbrektson A, Coates JD (2013) Physiological and genetic description of dissimilatory perchlorate reduction by the novel marine bacterium Arcobacter sp. strain CAB. mBio 4(3):1–9

    Article  Google Scholar 

  21. Clark IC, Melnyk RA, Iavarone AT, Novichkov PS, Coates JD (2014) Chlorate reduction in Shewanella algae ACDC is a recently acquired metabolism characterized by gene loss, suboptimal regulation, and oxidative stress. Mol Microbiol 94(1):107–125

    Article  CAS  PubMed  Google Scholar 

  22. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Frontiers Microbiol 5(4):1–16

    Google Scholar 

  23. Balk M, Van Gelder T, Weelink SA, Stams AJ (2008) (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. Appl Environ Microbiol 74(2):403–409

    Article  CAS  PubMed  Google Scholar 

  24. Nepomnyashchaya YN, Slobodkina GB, Baslerov RV, Chernyh NA, Bonch-Osmolovskaya EA, Netrusov AI, Slobodkin AI (2012) Moorella humiferrea sp. nov., a thermophilic, anaerobic bacterium capable of growth via electron shuttling between humic acid and Fe(III). Int J Syst Evol Microbiol 62:613–617

    Article  CAS  PubMed  Google Scholar 

  25. Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science (New York, NY) 236(4803):822–824

    Google Scholar 

  26. Khelifi N, Amin Ali O, Roche P, Grossi V, Brochier-Armanet C, Valette O, Ollivier B, Dolla A, Hirschler-Réa A (2014) Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus. ISME J 8:2153–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liebensteiner MG, Pinkse MWH, Nijsse B, Verhaert PDEM, Tsesmetzis N, Stams AJM, Lomans BP (2015) Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes. Environ Microbiol Rep 7(6):936–945

    Google Scholar 

  28. Carlson HK, Kuehl JV, Hazra AB, Justice NB, Stoeva MK, Sczesnak A, Mullan MR, Iavarone AT, Engelbrekstron A, Price MN, Deutschbauer AM, Arkin AP, Coates JD (2014) Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. ISME J 9:1295–1305

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carlström CI, Loutey DE, Wang O, Engelbrektson A, Clark I, Lucas LN, Somasekhar P, Coates JD (2015) Phenotypic and genotypic description of Sedimenticola selenatireducens strain CUZ, a Marine (Per)Chlorate-Respiring Gammaproteobacterium, and its close relative the chlorate-respiring Sedimenticola strain NSS. Appl Environ Microbiol 81(8):2717–2726

    Google Scholar 

  30. Coates JD, Bruce RA, Haddock JD (1998) Anoxic bioremediation of hydrocarbons. Nature 396(6713):730

    Article  CAS  PubMed  Google Scholar 

  31. Engelbrektson A, Hubbard CG, Tom LM, Boussina A, Jin YT, Wong H et al (2014) Inhibition of microbial sulfate reduction in a flow-through column system by (per) chlorate treatment. Frontiers Microbiol 5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Coates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Barnum, T.P., Coates, J.D. (2016). Enrichment and Isolation of Chloroxyanion-Respiring Hydrocarbon Oxidizers. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_194

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_194

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45178-6

  • Online ISBN: 978-3-662-45179-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics