Generation of Synthetic Antibody Fragments to Detergent Solubilized Membrane Proteins

  • Serdar UysalEmail author
  • Anthony Kossiakoff
Part of the Springer Protocols Handbooks book series (SPH)


Structural determination of membrane proteins is extremely challenging due to the physical characteristics of membrane proteins themselves and the lack of adequate tools and technologies to perform the studies. Recent developments in micro-focus X-ray beams, novel detergents, protein thermo-stabilization, and protein engineering have been essential in expanding the pool of membrane proteins deposited in PDB. Despite these advances, crystallization of membrane proteins still remains the main bottleneck in obtaining high quality structures. Recently, the use of antibody and non-antibody scaffold binding partners as crystallization “chaperones” has emerged as a powerful method to obtaining well-diffracting crystals of membrane proteins. In this chapter, a protocol is provided to generate synthetic antibody fragments for use as crystallization chaperones for membrane proteins.


Crystallization chaperones Phage display Synthetic antibodies 


  1. 1.
    Wallin E, Heijne GV (1998) Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038. doi: 10.1002/pro.5560070420 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Coste B, Mathur J, Schmidt M et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60. doi: 10.1126/science.1193270 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hubbard R, Kropf A (1958) The action of light on rhodopsin. Proc Natl Acad Sci U S A. doi: 10.1126/science.1193270 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Catterall AW (1995) Structure and function of voltage-gated ion channels. Annu Rev Biochem 64:493–531. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  5. 5.
    Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods. doi: 10.1146/ PubMedGoogle Scholar
  6. 6.
    Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117. doi: 10.1016/j.bbamem.2004.04.011 CrossRefPubMedGoogle Scholar
  7. 7.
    Michel H (1983) Crystallization of membrane proteins. Trends Biochem Sci 8:56–59. doi: 10.1016/0968-0004(83)90390-0 CrossRefGoogle Scholar
  8. 8.
    Caffrey M, Li D, Dukkipati A (2012) Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 51:6266–6288. doi: 10.1021/bi300010w CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316:1–6. doi: 10.1006/jmbi.2001.5295 CrossRefPubMedGoogle Scholar
  10. 10.
    Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669CrossRefPubMedGoogle Scholar
  11. 11.
    Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414:43–48. doi: 10.1038/35102009 CrossRefPubMedGoogle Scholar
  12. 12.
    Hino T, Arakawa T, Iwanari H et al (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–240. doi: 10.1038/nature10750 PubMedPubMedCentralGoogle Scholar
  13. 13.
    Fang Y, Jayaram H, Shane T et al (2009) Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460:1040–1043. doi: 10.1038/nature08201 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317. doi: 10.1126/science.4001944 CrossRefPubMedGoogle Scholar
  15. 15.
    Boder ET, Wittruo KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557. doi: 10.1038/nbt0697-553 CrossRefPubMedGoogle Scholar
  16. 16.
    Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A. doi: 10.1038/nbt.1791 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Jostock T, Dübel S (2005) Screening of molecular repertoires by microbial surface display. Comb Chem High Throughput Screen 8:127–133. doi: 10.2174/1386207053258479 CrossRefPubMedGoogle Scholar
  18. 18.
    de Haard HJ, van Neer N, Reurs A et al (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274:18218–18230CrossRefPubMedGoogle Scholar
  19. 19.
    Vaughan TJ, Williams AJ, Pritchard K et al (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14:309–314. doi: 10.1038/nbt0396-309 CrossRefPubMedGoogle Scholar
  20. 20.
    Arbabi Ghahroudi M, Desmyter A, Wyns L et al (1998) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526. doi: 10.1016/S0014-5793(97)01062-4 CrossRefGoogle Scholar
  21. 21.
    Binz HK, Amstutz P, Kohl A et al (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22:575–582. doi: 10.1038/nbt962 CrossRefPubMedGoogle Scholar
  22. 22.
    Koide A, Bailey CW, Huang X, Koide S (1998) The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 284:1141–1151. doi: 10.1006/jmbi.1998.2238 CrossRefPubMedGoogle Scholar
  23. 23.
    Schönfeld D, Matschiner G, Chatwell L et al (2009) An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc Natl Acad Sci U S A 106:8198–8203. doi: 10.1073/pnas.0813399106 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cyranka-Czaja A, Otlewski J (2012) A novel, stable, helical scaffold as an alternative binder—construction of phage display libraries. Acta Biochim Pol 59(3):383–390PubMedGoogle Scholar
  25. 25.
    Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:469–474. doi: 10.1038/nature10737 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hino T, Iwata S, Murata T (2013) Generation of functional antibodies for mammalian membrane protein crystallography. Curr Opin Struct Biol 23:563–568. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  27. 27.
    Fellouse FA, Wiesmann C, Sidhu SS (2004) Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc Natl Acad Sci U S A 101:12467–12472. doi: 10.1073/pnas.0401786101 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K (2011) High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 16:3675–3700. doi: 10.3390/molecules16053675 CrossRefPubMedGoogle Scholar
  29. 29.
    Lee CV, Liang W-C, Dennis MS et al (2004) High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J Mol Biol 340:1073–1093. doi: 10.1016/j.jmb.2004.05.051 CrossRefPubMedGoogle Scholar
  30. 30.
    Uysal S, Vásquez V, Tereshko V et al (2009) Crystal structure of full-length KcsA in its closed conformation. Proc Natl Acad Sci U S A 106:6644–6649. doi: 10.1073/pnas.0810663106 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ye J-D, Tereshko V, Frederiksen JK et al (2008) Synthetic antibodies for specific recognition and crystallization of structured RNA. Proc Natl Acad Sci U S A 105:82–87. doi: 10.1073/pnas.0709082105 CrossRefPubMedGoogle Scholar
  32. 32.
    Razai A, Garcia-Rodriguez C, Lou J et al (2005) Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J Mol Biol 351:158–169. doi: 10.1016/j.jmb.2005.06.003 CrossRefPubMedGoogle Scholar
  33. 33.
    Uysal S, Cuello LG, Cortes DM et al (2011) Mechanism of activation gating in the full-length KcsA K+ channel. Proc Natl Acad Sci U S A 108:11896–11899. doi: 10.1073/pnas.1105112108 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li Q, Wanderling S, Paduch M et al (2014) Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat Struct Mol Biol 21:244–252. doi: 10.1038/nsmb.2768 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Doyle DA, Cabral JM, Pfuetzner RA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77. doi: 10.1126/science.280.5360.69 CrossRefPubMedGoogle Scholar
  36. 36.
    Fellouse FA, Esaki K, Birtalan S et al (2007) High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol 373:924–940. doi: 10.1016/j.jmb.2007.08.005 CrossRefPubMedGoogle Scholar
  37. 37.
    Fellouse FA, Barthelemy PA, Kelley RF, Sidhu SS (2006) Tyrosine plays a dominant functional role in the paratope of a synthetic antibody derived from a four amino acid code. J Mol Biol 357:100–114. doi: 10.1016/j.jmb.2005.11.092 CrossRefPubMedGoogle Scholar
  38. 38.
    Birtalan S, Zhang Y, Fellouse FA et al (2008) The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J Mol Biol 377:1518–1528. doi: 10.1016/j.jmb.2008.01.093 CrossRefPubMedGoogle Scholar
  39. 39.
    Adams JJ, Nelson B, Sidhu SS (2014) Recombinant genetic libraries and human monoclonal antibodies. Methods Mol Biol 1060:149–170. doi: 10.1007/978-1-62703-586-6_9 CrossRefPubMedGoogle Scholar
  40. 40.
    Paduch M, Koide A, Uysal S et al (2013) Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods 60:3–14. doi: 10.1016/j.ymeth.2012.12.010 CrossRefPubMedGoogle Scholar
  41. 41.
    Zhong N, Loppnau P, Seitova A et al (2015) Optimizing production of antigens and Fabs in the context of generating recombinant antibodies to human proteins. PLoS One 10:e0139695. doi: 10.1371/journal.pone.0139695 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Basic Medical SciencesSchool of Medicine, Bezmialem Vakif UniversityIstanbulTurkey
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUSA

Personalised recommendations