Skip to main content

Denaturing Gradient Gel Electrophoresis (DGGE) for Microbial Community Analysis

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Denaturing gradient gel electrophoresis (DGGE) is a molecular technique for fingerprint analysis of microbial community composition, diversity, and dynamics. The method is rapid and affordable, allowing multiple samples to be processed simultaneously. This protocol provides a background to the theory and progress in DGGE techniques and offers a detailed step-by-step procedure for laboratories employing DGGE for the analysis of microbial communities from environmental samples. Potential sources of bias are highlighted, in addition to a detailed troubleshooting section that helps overcome common problems. The protocol outlines steps for preparing gel solutions, pouring gels, operating the C.B.S. Scientific and Bio-Rad systems, and excising fingerprint bands for sequencing. All required reagents and supplies are listed, as are the sequences of the most commonly used PCR primers for DGGE of bacterial, archaeal, and eukaryotic 16S rRNA gene amplicons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bio-Rad offers a complete reagent kit, 170-9170.

References

  1. Crick FHC, Watson JD (1954) The complementary structure of deoxyribonucleic acid. Proc R Soc Lond Ser A 223:80–96

    Article  CAS  Google Scholar 

  2. Fischer SG, Lerman LS (1979) Length-independent separation of DNA restriction fragments in 2-dimensional gel-electrophoresis. Cell 16:191–200

    Article  CAS  PubMed  Google Scholar 

  3. Fischer SG, Lerman LS (1980) Separation of random fragments of DNA according to properties of their sequences. Proc Natl Acad Sci U S A 77:4420–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels – correspondence with melting theory. Proc Natl Acad Sci U S A 80:1579–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Neufeld JD, Mohn WW, de Lorenzo V (2006) Composition of microbial communities in hexachlorocyclohexane (HCH) contaminated soils from Spain revealed with a habitat-specific microarray. Environ Microbiol 8:126–140

    Article  CAS  PubMed  Google Scholar 

  7. Myers R, Fischer S, Lerman L, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci U S A 86:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, Elsas JD, Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 1–27

    Google Scholar 

  11. Nikolausz M, Sipos R, Revesz S, Szekely A, Marialigeti K (2005) Observation of bias associated with re-amplification of DNA isolated from denaturing gradient gels. FEMS Microbiol Lett 244:385–390

    Article  CAS  PubMed  Google Scholar 

  12. El Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65:982–988

    PubMed  PubMed Central  Google Scholar 

  13. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanchez O, Gasol JM, Massana R, Mas J, Pedros-Alio C (2007) Comparison of different denaturing gradient gel electrophoresis primer sets for the study of marine bacterioplankton communities. Appl Environ Microbiol 73:5962–5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brons JK, van Elsas JD (2008) Analysis of bacterial communities in soil by use of denaturing gradient gel electrophoresis and clone libraries, as influenced by different reverse primers. Appl Environ Microbiol 74:2717–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Casamayor EO, Schäfer H, Bañeras L, Pedrós-Alió C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Diez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

    Article  CAS  Google Scholar 

  20. Yu Z, Garcia-Gonzalez R, Schanbacher FL, Morrison M (2008) Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 74:889–893

    Article  CAS  PubMed  Google Scholar 

  21. Pavel A, Vasile C (2012) PyElph – a software tool for gel images analysis and phylogenetics. BMC Bioinf 13:9

    Article  Google Scholar 

  22. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  CAS  PubMed  Google Scholar 

  23. Booth T, Gilbert J, Neufeld JD et al (2007) Handlebar: a flexible, web-based inventory manager for handling barcoded samples. Biotechniques 42:300–302

    Article  CAS  PubMed  Google Scholar 

  24. Verastegui Y, Cheng J, Engel K et al (2014) Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities. mBio 5:e01157–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cytryn E, van Rijn J, Schramm A, Gieseke A, de Beer D, Minz D (2005) Identification of bacteria potentially responsible for oxic and anoxic sulfide oxidation in biofilters of a recirculating mariculture system. Appl Environ Microbiol 71:6134–6141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Neufeld JD, Mohn WW (2005) Fluorophore-labeled primers improve the sensitivity, versatility and normalization of denaturing gradient gel electrophoresis (DGGE). Appl Environ Microbiol 71:4893–4896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sauder LA, Peterse F, Schouten S, Neufeld JD (2012) Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant. Environ Microbiol 14:2589–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mühling M, Woolven-Allen J, Murrell JC, Joint I (2008) Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2:379–392

    Article  PubMed  Google Scholar 

  29. Bartram AK, Jiang X, Lynch MD et al (2014) Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm. FEMS Microbiol Ecol 87:403–415

    Article  CAS  PubMed  Google Scholar 

  30. Jones CM, Thies JE (2007) Soil microbial community analysis using two-dimensional polyacrylamide gel electrophoresis of the bacterial ribosomal internal transcribed spacer regions. J Microbiol Methods 69:256–267

    Article  CAS  PubMed  Google Scholar 

  31. Wilms R, Sass H, Kopke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59:611–621

    Article  CAS  PubMed  Google Scholar 

  32. Geets J, Borrernans B, Diels L et al (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205

    Article  CAS  PubMed  Google Scholar 

  33. Ea K, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA (2005) Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 71:6353–6359

    Article  Google Scholar 

  34. Hendrickx B, Dejonghe W, Faber F et al (2006) PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiol Ecol 55:262–273

    Article  CAS  PubMed  Google Scholar 

  35. Hoffmann T, Horz HP, Kemnitz D, Conrad R (2002) Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines. Syst Appl Microbiol 25:267–274

    Article  CAS  PubMed  Google Scholar 

  36. Oved T, Shaviv A, Goldrath T, Mandelbaum RT, Minz D (2001) Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 67:3426–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morimoto S, Togami K, Ogawa N, Hasebe A, Fujii T (2005) Analysis of a bacterial community in 3-chlorobenzoate-contaminated soil by PCR-DGGE targeting the 16S rRNA gene and benzoate 1,2-dioxygenase gene (benA). Microbes Environ 20:151–159

    Article  Google Scholar 

  38. Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Article  CAS  PubMed  Google Scholar 

  39. Short SM, Suttle CA (2000) Denaturing gradient gel electrophoresis resolves virus sequences amplified with degenerate primers. Biotechniques 28:20–26

    CAS  PubMed  Google Scholar 

  40. Green SJ (2006) A guide to denaturing gradient gel electrophoresis. http://ddgehelp.blogspot.com/

  41. Peterson C (2007) Denaturing gradient gel electrophoresis (DGGE). J Vis Exp 2:164

    Google Scholar 

  42. Sigler WV, Miniaci C, Zeyer J (2004) Electrophoresis time impacts the denaturing gradient gel electrophoresis-based assessment of bacterial community structure. J Microbiol Methods 57:17–22

    Article  CAS  PubMed  Google Scholar 

  43. Yu ZT, Morrison M (2004) Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:4800–4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

MBL was supported by NSF Award 0626544 and JDN acknowledges a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan J. Green , Mary Beth Leigh or Josh D. Neufeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Green, S.J., Leigh, M.B., Neufeld, J.D. (2015). Denaturing Gradient Gel Electrophoresis (DGGE) for Microbial Community Analysis. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_99

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_99

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52776-4

  • Online ISBN: 978-3-662-52778-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics