Skip to main content

Cultivation of Hydrocarbon-Degrading Fungi

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Fungi form the biggest microbial biomass and are key drivers of hydrocarbon biodegradation. We here describe standard cultivation methods for fungi that use hydrocarbons either as sole carbon and energy source or co-metabolically degrade them. The methods include both liquid (Protocols 1 and 2) and solid-state cultivation approaches (Protocol 3) as well as a versatile protocol to monitor fungal biomass based on the quantification of the specific fungal marker ergosterol (Protocol 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, Taylor JW (2009) The fungi. Curr Biol 19:R840–R845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  PubMed  Google Scholar 

  3. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  PubMed  Google Scholar 

  4. Junghanns C, Moeder M, Krauss G, Martin C, Schlosser D (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45–57. doi:10.1099/mic.0.27431-0

    Article  CAS  PubMed  Google Scholar 

  5. Junghanns C, Krauss G, Schlosser D (2008) Potential of aquatic fungi derived from diverse freshwater environments to decolourise synthetic azo and anthraquinone dyes. Bioresour Technol 99:1225–1235

    Article  CAS  PubMed  Google Scholar 

  6. Weber F, Hage K, de Bont J (1995) Growth of the fungus Cladosporium sphaerospermum with toluene as the sole carbon and energy source. Appl Environ Microbiol 61:3562–3566

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Raghukumar C, D’Souza TM, Thorn RG, Reddy CA (1999) Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Appl Environ Microbiol 65:2103–2111

    CAS  PubMed  PubMed Central  Google Scholar 

  8. D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb Technol 38:504–511

    Article  Google Scholar 

  9. Klamer M, Bååth E (2004) Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9. Soil Biol Biochem 36:57–65 doi: http://dx.doi.org/10.1016/j.soilbio.2003.08.019

  10. Hartmans S, Smits JP, van der Werf MJ, Volkering F, de Bont JAM (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol 55:2850–2855

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Herklotz I (2006) Untersuchungen zur Isotopenfraktionierung während des aeroben Benzol- und Toluolabbaus durch verschiedene Mikroorganismen. Diploma thesis, TU Bergakademie Freiberg

    Google Scholar 

  12. Vogt C, Cyrus E, Herklotz I, Schlosser D, Bahr A, Herrmann S, Richnow H-H, Fischer A (2008) Evaluation of toluene degradation pathways by two-dimensional stable isotope fractionation. Environ Sci Technol 42:7793–7800. doi:10.1021/es8003415

    Article  CAS  PubMed  Google Scholar 

  13. Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood- decaying fungi. Appl Environ Microbiol 63:3919–3925

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fahr K, Wetzstein H-G, Grey R, Schlosser D (1999) Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175:127–132

    Article  CAS  PubMed  Google Scholar 

  15. Sack U, Fritsche W (1997) Enhancement of pyrene mineralization in soil by wood-decaying fungi. FEMS Microbiol Ecol 22:77

    Article  CAS  Google Scholar 

  16. Tippmann J (2015) Vorbehandlung bioenergetisch nutzbarer Lignocellulosen durch komplexe Pilzgemeinschaften. MSc Thesis, Intenational Institute (IHI) Zittau / TU Dresden

    Google Scholar 

  17. Prenafeta-Boldú FX, Summerbell R, Sybren de Hoog G (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130

    Article  PubMed  Google Scholar 

  18. Ng KP, Yew SM, Chan CL, Soo-Hoo TS, Na SL, Hassan H, Ngeow YF, Hoh C-C, Lee K-W, Yee W-Y (2012) Sequencing of Cladosporium sphaerospermum, a dematiaceous fungus isolated from blood culture. Eukaryot Cell 11:705–706. doi:10.1128/ec.00081-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jahangiri E, Reichelt S, Thomas I, Hausmann K, Schlosser D, Schulze A (2014) Electron beam-induced immobilization of laccase on porous supports for waste water treatment applications. Molecules 19:11860–11882

    Article  CAS  PubMed  Google Scholar 

  20. Schlosser D, Fahr K, Karl W, Wetzstein H-G (2000) Hydroxylated metabolites of 2,4-dichlorophenol imply a Fenton-type reaction in Gloeophyllum striatum. Appl Environ Microbiol 66:2479–2483. doi:10.1128/aem.66.6.2479-2483.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steffen KT, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212–217

    Article  CAS  PubMed  Google Scholar 

  22. Steffen KT, Hatakka A, Hofrichter M (2003) Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase. Appl Environ Microbiol 69:3957–3964. doi:10.1128/aem.69.7.3957-3964.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pasanen A-L, Yli-Pietilä K, Pasanen P, Kalliokoski P, Tarhanen J (1999) Ergosterol content in various fungal species and biocontaminated building materials. Appl Environ Microbiol 65:138–142

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Montgomery HJ, Monreal CM, Young JC, Seifert KA (2000) Determination of soil fungal biomass from soil ergosterol analyses. Soil Biol Biochem 32:1207–1217 doi: http://dx.doi.org/10.1016/S0038-0717(00)00037-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Y. Wick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Schlosser, D., Wick, L.Y. (2015). Cultivation of Hydrocarbon-Degrading Fungi. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_97

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_97

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45178-6

  • Online ISBN: 978-3-662-45179-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics