Abstract
Genetically engineered organisms are per se subject to a biosafety risk assessment to define whether the resulting organism is safe for humans and the environment, either for contained use or environmental release. Contained use currently means physical containment and allows for a less strict assessment compared to environmental release. With developments in synthetic biology, we are currently witnessing the evolution of different forms of nonphysical containment enabled by sophisticated forms of genetic engineering, genome recoding, and xenobiology. Design and implementation of cells that use advanced suicide circuits, different genetic codes, alternative nucleic acids, amino acids, etc., will allow for a semantic or informational containment restricting and possibly eliminating horizontal gene flow with natural species. Here, we describe the scientific advances in this field and map the different approaches to design safe xeno-organisms. Finally, we address the questions that will have to be answered when semantic biocontainment systems become a reality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379
Armstrong R, Schmidt M, Bedau M (2012) Other developments in synthetic biology. In: Schmidt M (ed) Synthetic biology industrial and environmental applications. Wiley, Weinheim
Moe-Behrens GH, Davis R, Haynes KA (2013) Preparing synthetic biology for the world. Front Microbiol 4:5
DFG, acatech and Lepoldina (2009) Synthetic biology: positions. http://www.dfg.de/download/pdf/dfg_im_profil/reden_stellungnahmen/2009/stellungnahme_synthetische_biologie.pdf
EGE (2009) Ethics of synthetic biology. http://ec.europa.eu/bepa/european-group-ethics/docs/opinion25_en.pdf
Gaisser S, Reiss T, Lunkes A, Muller K, Bernauer H (2009) Making the most of synthetic biology. Strategies for synthetic biology development in Europe. EMBO Rep 10(Suppl 1):S5–S8
Schmidt M, Ganguli-Mitra A, Torgersen H, Kelle A, Deplazes A, Biller-Andorno N (2009) A priority paper for the societal and ethical aspects of synthetic biology. Syst Synth Biol 3(1–4):3–7
The Royal Academy of Engineering (2009) Synthetic biology: scope, applications and implications. The Royal Academy of Engineering, London
Bubela T, Hagen G, Einsiedel E (2012) Synthetic biology confronts publics and policy makers: challenges for communication, regulation and commercialization. Trends Biotechnol 30(3):132–137
Torgersen H, Schmidt M (2013) Frames and comparators: how might a debate on synthetic biology evolve? Futures 48(100):44–54
Wright O, Stan GB, Ellis T (2013) Building-in biosafety for synthetic biology. Microbiology 159(Pt 7):1221–1235
Schmidt M, de Lorenzo V (2012) Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology. FEBS Lett 586(15):2199–2206
Wright O, Delmans M, Stan G-B, Ellis T (2014) GeneGuard: a modular plasmid system designed for biosafety. ACS Synth Biol 4:307–316
Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42(2):73–91
Townsend JP, Bohn T, Nielsen KM (2012) Assessing the probability of detection of horizontal gene transfer events in bacterial populations. Front Microbiol 3:27
Marris C, Jefferson C (2013) Workshop on “Synthetic biology: containment and release of engineered micro-organisms” held on 29 April 2013 at King’s College London: Summary of Discussions. https://kclpure.kcl.ac.uk/portal/en/publications/workshop-on-synthetic-biology-containment-and-release-of-engineered-microorganisms-held-on-29-april-2013-at-kings-college-london%28df5f0ce4-61a9-4067-9705-1851926aa2a2%29/export.html
Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, Silver PA (2014) Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci U S A 111:4838–4843
Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390
Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342
Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338
Campos L (2009) That was the synthetic biology that was. In: Schmidt M, Kelle A, Ganguli-Mitra A, de Vriend H (eds) Synthetic biology: the technoscience and its societal consequences. Springer, Dordrecht, pp 5–21
Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22(7):841–847
Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23(3):337–343
Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134
Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456(7221):516–519
Brigulla M, Wackernagel W (2010) Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues. Appl Microbiol Biotechnol 86(4):1027–1041
Yang S, Sleight SC, Sauro HM (2013) Rationally designed bidirectional promoter improves the evolutionary stability of synthetic genetic circuits. Nucleic Acids Res 41(1):e33
Carroll D (2011) Zinc-finger nucleases: a panoramic view. Curr Gene Ther 11(1):2–10
Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148
Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405
Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355
Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56
Annaluru N, Muller H, Mitchell LA, Ramalingam S, Stracquadanio G, Richardson SM, Dymond JS, Kuang Z, Scheifele LZ, Cooper EM, Cai Y, Zeller K, Agmon N, Han JS, Hadjithomas M, Tullman J, Caravelli K, Cirelli K, Guo Z, London V, Yeluru A, Murugan S, Kandavelou K, Agier N, Fischer G, Yang K, Martin JA, Bilgel M, Bohutski P, Boulier KM, Capaldo BJ, Chang J, Charoen K, Choi WJ, Deng P, DiCarlo JE, Doong J, Dunn J, Feinberg JI, Fernandez C, Floria CE, Gladowski D, Hadidi P, Ishizuka I, Jabbari J, Lau CY, Lee PA, Li S, Lin D, Linder ME, Ling J, Liu J, Liu J, London M, Ma H, Mao J, McDade JE, McMillan A, Moore AM, Oh WC, Ouyang Y, Patel R, Paul M, Paulsen LC, Qiu J, Rhee A, Rubashkin MG, Soh IY, Sotuyo NE, Srinivas V, Suarez A, Wong A, Wong R, Xie WR, Xu Y, Yu AT, Koszul R, Bader JS, Boeke JD, Chandrasegaran S (2014) Total synthesis of a functional designer eukaryotic chromosome. Science 344(6179):55–58
Pennisi E (2014) Building the ultimate yeast genome. Science 343:1426–1429
Budisa N, Minks C, Alefelder S, Wenger W, Dong F, Moroder L, Huber R (1999) Toward the experimental codon reassignment in vivo: protein building with an expanded amino acid repertoire. FASEB J 13(1):41–51
Hoesl MG, Budisa N (2012) Recent advances in genetic code engineering in Escherichia coli. Curr Opin Biotechnol 23(5):751–757
Budisa N (2013) Expanded genetic code for the engineering of ribosomally synthetized and post-translationally modified peptide natural products (RiPPs). Curr Opin Biotechnol 24(4):591–598
di Salvo ML, Budisa N, Contestabile R (2013) PLP-dependent Enzymes: a powerful tool for metabolic synthesis of non-canonical amino acids. In: Beilstein Bozen symposium on molecular engineering and control. Beilstein Institute, Prien, pp 27–66
Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444
Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464(7287):441–444
Ma Y, Biava H, Contestabile R, Budisa N, di Salvo ML (2014) Coupling bioorthogonal chemistries with artificial metabolism: intracellular biosynthesis of azidohomoalanine and its incorporation into recombinant proteins. Molecules 19(1):1004–1022
Doering V (2007) Sense codon reassignment as means of synthesizing safe genetically engineered microorganism. SB3.0, Zurich
Campbell JH, O’Donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke T, Soll D, Podar M (2013) UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc Natl Acad Sci U S A 110(14):5540–5545
Ling J, Daoud R, Lajoie MJ, Church GM, Soll D, Lang BF (2014) Natural reassignment of CUU and CUA sense codons to alanine in Ashbya mitochondria. Nucleic Acids Res 42(1):499–508
Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H, Annaluru N, Blake WJ, Schwerzmann JW, Dai J, Lindstrom DL, Boeke AC, Gottschling DE, Chandrasegaran S, Bader JS, Boeke JD (2011) Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477(7365):471–476
Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B, Kraal L, Tolonen AC, Gianoulis TA, Goodman DB, Reppas NB, Emig CJ, Bang D, Hwang SJ, Jewett MC, Jacobson JM, Church GM (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333(6040):348–353
Lajoie MJ, Kosuri S, Mosberg JA, Gregg CJ, Zhang D, Church GM (2013) Probing the limits of genetic recoding in essential genes. Science 342(6156):361–363
Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342(6156):357–360
Mandell DJ, Lajoie MJ, Mee MT, Takeuchi R, Kuznetsov G, Norville JE, Gregg CJ, Stoddard BL, Church GM (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60
Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW, Gassaway BM, Amiram M, Patel JR, Gallagher RR, Rinehart J, Isaacs FJ (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature 518:89–93
Sc2.0. “Synthetic Yeast 2.0”. http://biostudio.bme.jhu.edu/sc2/?page_id=63
Ravikumar A, Arrieta A, Liu CC (2014) An orthogonal DNA replication system in yeast. Nat Chem Biol 10:175–177
Marliere P, Patrouix J, Doring V, Herdewijn P, Tricot S, Cruveiller S, Bouzon M, Mutzel R (2011) Chemical evolution of a bacterium’s genome. Angew Chem Int Ed Engl 50(31):7109–7114
Schmidt M (2010) Xenobiology: a new form of life as the ultimate biosafety tool. Bioessays 32(4):322–331
Acevedo-Rocha CG, Budisa N (2011) On the road towards chemically modified organisms endowed with a genetic firewall. Angew Chem Int Ed Engl 50(31):6960–6962
Burns CC, Shaw J, Campagnoli R, Jorba J, Vincent A, Quay J, Kew O (2006) Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol 80(7):3259–3272
Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320(5884):1784–1787
Mueller S, Coleman JR, Papamichail D, Ward CB, Nimnual A, Futcher B, Skiena S, Wimmer E (2010) Live attenuated influenza virus vaccines by computer-aided rational design. Nat Biotechnol 28(7):723–726
Bull JJ, Molineux IJ, Wilke CO (2012) Slow fitness recovery in a codon-modified viral genome. Mol Biol Evol 29(10):2997–3004
Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461(7268):1243–1247
Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284(5423):2118–2124
Pace NR (2001) The universal nature of biochemistry. Proc Natl Acad Sci U S A 98(3):805–808
Chaput JC, Ichida JK, Szostak JW (2003) DNA polymerase-mediated DNA synthesis on a TNA template. J Am Chem Soc 125(4):856–857
Ichida JK, Horhota A, Zou K, McLaughlin LW, Szostak JW (2005) High fidelity TNA synthesis by Therminator polymerase. Nucleic Acids Res 33(16):5219–5225
Kempeneers V, Renders M, Froeyen M, Herdewijn P (2005) Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization. Nucleic Acids Res 33(12):3828–3836
Marliere P (2009) The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. Syst Synth Biol 3(1–4):77–84
Yang Z, Hutter D, Sheng P, Sismour AM, Benner SA (2006) Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Res 34(21):6095–6101
Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Correa IR, Romesberg FE (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–388
Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH, Herdewijn P, Holliger P (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336(6079):341–344
SCHER, SCENIHR, SCCS (2014) Preliminary opinion on synthetic biology I definition. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_044.pdf
Acknowledgments
Author acknowledges the financial support of the EC-FP7 project METACODE (EC Grant No. 289572), and MS acknowledges the financial support of the EC-FP7 project ST-FLOW (EC Grant No. 289326).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this protocol
Cite this protocol
Schmidt, M., Pei, L. (2015). Improving Biocontainment with Synthetic Biology: Beyond Physical Containment. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols . Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_90
Download citation
DOI: https://doi.org/10.1007/8623_2015_90
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-50430-7
Online ISBN: 978-3-662-50432-1
eBook Packages: Springer Protocols