Skip to main content

Protocol for Evaluating the Biological Stability of Fuel Formulations and Their Relationship to Carbon Steel Biocorrosion

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The microbial metabolism of conventional and alternative fuels can be associated with the biocorrosion of the mostly carbon steel energy infrastructure. This phenomenon is particularly acute in anaerobic sulfate-rich environments. It is therefore important to reliably assess the inherent susceptibility of fuels to anaerobic biodegradation in marine waters as well as provide a measure of the impact of this metabolism on the integrity of steel. Such an assessment of fuels is increasingly important since the exact chemical makeup of both traditional and biofuels can vary and even subtle changes have a profound impact on steel biocorrosion. Herein, we describe a simple protocol involving the incubation of carbon steel coupons in seawater under anaerobic conditions. The increased depletion of sulfate in fuel-amended seawater incubations relative to both autoclaved and fuel-unamended negative controls is monitored as a function of time. We also recommend the incorporation of a known hydrocarbon-degrading sulfate-reducing bacterium as a positive control in the assay to verify that the protocol is not predisposed to failure for unrecognized reasons. At the end of the incubation, corrosion is assessed by both coupon weight loss and a mass balance of the total iron released. Lastly, three-dimension noncontact profilometry is used to assess the degree of damage (e.g., pitting) to the coupons. The integration of the interdisciplinary approaches in this protocol allows for a critical assessment of the biological stability of both traditional and alternative fuel formulations and their potential in exacerbating biocorrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12(3):259–276

    Article  CAS  PubMed  Google Scholar 

  2. Rabus R (2005) Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Appl Microbiol Biotechnol 68(5):580–587

    Article  CAS  PubMed  Google Scholar 

  3. Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74(10):3022–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. So CM, Young L (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65(7):2969–2976

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Davidova IA, Duncan KE, Choi OK, Suflita JM (2006) Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56(12):2737–2742

    Article  CAS  PubMed  Google Scholar 

  6. Caldwell ME, Garrett RM, Prince RC, Suflita JM (1998) Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions. Environ Sci Technol 32(14):2191–2195

    Article  CAS  Google Scholar 

  7. Townsend GT, Prince RC, Suflita JM (2003) Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol 37(22):5213–5218

    Article  CAS  PubMed  Google Scholar 

  8. Lyles CN, Aktas DF, Duncan KE, Callaghan AV, Stevenson BS, Suflita JM (2013) Impact of organosulfur content on diesel fuel stability and implications for carbon steel corrosion. Environ Sci Technol 47(11):6052–6062

    Article  CAS  PubMed  Google Scholar 

  9. Aktas DF, Lee JS, Little BJ, Ray RI, Davidova IA, Lyles CN, Suflita JM (2010) Anaerobic metabolism of biodiesel and its impact on metal corrosion. Energ Fuel 24(5):2924–2928

    Article  CAS  Google Scholar 

  10. Lee JS, Ray RI, Little BJ, Duncan KE, Oldham AL, Davidova IA, Suflita JM (2012) Sulphide production and corrosion in seawaters during exposure to FAME diesel. Biofouling 28(5):465–478

    Article  CAS  PubMed  Google Scholar 

  11. Aktas DF, Lee JS, Little BJ, Duncan KE, Perez-Ibarra BM, Suflita JM (2013) Effects of oxygen on biodegradation of fuels in a corroding environment. Int Biodeter Biodegr 81:114–126

    Article  CAS  Google Scholar 

  12. Lee JS, Ray RI, Little BJ (2012) An investigation of anaerobic processes in fuel/natural seawater environments. Document, DTIC

    Google Scholar 

  13. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energ Fuels 22(2):1358–1364

    Article  CAS  Google Scholar 

  14. Liu G, Larson ED, Williams RH, Kreutz TG, Guo X (2010) Making Fischer−Tropsch fuels and electricity from coal and biomass: performance and cost analysis. Energ Fuels 25(1):415–437

    Article  CAS  Google Scholar 

  15. Albuquerque M, Machado Y, Torres A, Azevedo D, Cavalcante C, Firmiano L, Parente E (2009) Properties of biodiesel oils formulated using different biomass sources and their blends. Renew Energ 34(3):857–859

    Article  CAS  Google Scholar 

  16. Altıparmak D, Keskin A, Koca A, Gürü M (2007) Alternative fuel properties of tall oil fatty acid methyl ester–diesel fuel blends. Bioresour Technol 98(2):241–246

    Article  CAS  PubMed  Google Scholar 

  17. Conkle H, Marcum G, Griesenbrock E, Edwards E, Chauhan S (2012) Development of Surrogates of Alternative Liquid Fuels Generated from Biomass. ASC Document Number 88ABW-2012-2132

    Google Scholar 

  18. Hamilton LJ, Williams SA, Kamin RA, Carr MA, Caton PA, Cowart JS (2011) Renewable fuel performance in a legacy military diesel engine. Document number AIAA-2008-6412, In ASME 2011 5th International Conference on Energy Sustainability, pp. 1095–1107

    Google Scholar 

  19. Rodriguez B, Bartsch TM (2008) The United States Air Force’s process for alternative fuels certification. Document number AIAA-2008-6412, 26th AIAA Applied Aerodynamics Conference, Honolulu, HI, 18—21 August 2008.

    Google Scholar 

  20. Richard TL (2010) Challenges in scaling up biofuels infrastructure. Science(Washington) 329(5993):793–796

    Article  CAS  Google Scholar 

  21. Sarisky-Reed V (2009) Advanced Biofuels: Infrastructure Compatible Biofuels. US Department of Energy, Ed, ed, presentation to Biomass R&D Technical Advisory Committee. (www.biomassboard.gov/pdfs/advanced_biofuels_doejg.pdf)

  22. DeMello JA, Carmichael CA, Peacock EE, Nelson RK, Samuel Arey J, Reddy CM (2007) Biodegradation and environmental behavior of biodiesel mixtures in the sea: an initial study. Marine Poll Bull 54(7):894–904

    Article  CAS  Google Scholar 

  23. Owsianiak M, Chrzanowski Ł, Szulc A, Staniewski J, Olszanowski A, Olejnik-Schmidt AK, Heipieper HJ (2009) Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. Bioresour Technol 100(3):1497–1500

    Article  CAS  PubMed  Google Scholar 

  24. Sharma Y, Singh B, Upadhyay S (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87(12):2355–2373

    Article  CAS  Google Scholar 

  25. Lee JS, Ray RI, Little BJ (2010) An assessment of alternative diesel fuels: microbiological contamination and corrosion under storage conditions. Biofouling 26(6):623–635

    Article  CAS  PubMed  Google Scholar 

  26. Wang W, Jenkins PE, Ren Z (2012) Electrochemical corrosion of carbon steel exposed to biodiesel/simulated seawater mixture. Corro Sci 57:215–219

    Article  CAS  Google Scholar 

  27. Wang W, Jenkins PE, Ren Z (2011) Heterogeneous corrosion behaviour of carbon steel in water contaminated biodiesel. Corro Sci 53(2):845–849

    Article  CAS  Google Scholar 

  28. ASTM, G 1–03 (2003), Standard Practice for Preparing, Cleaning, and Evaluating corrosion test specimens.ASTM International, pp. 1–9.

    Google Scholar 

  29. Stookey LL (1970) Ferrozine–a new spectrophotometric reagent for iron. Anal Chem 42(7):779–781

    Article  CAS  Google Scholar 

  30. Lovley DR, Phillips EJ (1986) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl Environ Microbiol 52(4):751–757

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Duncan KE, Perez-Ibarra BM, Jenneman G, Harris JB, Webb R, Sublette K (2014) The effect of corrosion inhibitors on microbial communities associated with corrosion in a model flow cell system. Appl Microbiol Biotechnol 98(2):907–918

    Article  CAS  PubMed  Google Scholar 

  32. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: The prokaryotes. Springer New York, pp 3352–3378

    Google Scholar 

  33. Gieg LM, Suflita JM (2002) Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ Sci Technol 36(17):3755–3762

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We acknowledge the financial support from the Office of Naval Research (Award no. N0001408WX20857) and the advice and expertise of the many investigators on this project who contributed to the development of this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Suflita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Liang, R., Suflita, J.M. (2015). Protocol for Evaluating the Biological Stability of Fuel Formulations and Their Relationship to Carbon Steel Biocorrosion. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_76

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_76

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49138-6

  • Online ISBN: 978-3-662-49140-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics