Characterization of Bacterial Symbionts in Deep-Sea Fauna: Protocols for Sample Conditioning, Fluorescence In Situ Hybridization, and Image Analysis

  • Sébastien DuperronEmail author
Part of the Springer Protocols Handbooks book series (SPH)


Symbioses with bacteria are key adaptations allowing various groups of metazoans to reach high biomasses at deep sea reducing habitats including hydrothermal vents and cold seeps. Characterizing these associations is challenging due to the constraints associated with work on deep-sea organisms. These include limited sample availability, impact of recovery procedures and shipment on sample quality, and general lack of environmental data. In this chapter, a standard procedure for sample processing at sea which can maximize sample use back in the laboratory is presented, with example protocols for sample fixation, fluorescence in situ hybridization (FISH)-based localization of symbionts in animal tissues, and estimation of their relative abundances in the case of multiple symbioses.


Deep sea Fluorescence in situ hybridization Sample conditioning Symbiosis 


  1. 1.
    McFall-Ngai M, Hadfield MG, Bosch TCG et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tunnicliffe V, Juniper SK, Sibuet M (2003) Reducing environments of the deep-sea floor. In: Tyler PA (ed) Ecosyst. Elsevier, World Deep-Sea, pp 81–110Google Scholar
  3. 3.
    Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740CrossRefPubMedGoogle Scholar
  4. 4.
    Petersen JM, Dubilier N (2009) Methanotrophic symbioses in marine invertebrates. Env Microbiol Rep 1:319–335CrossRefGoogle Scholar
  5. 5.
    Zielinski FU, Pernthaler A, Duperron S et al (2009) Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels. Environ Microbiol 11:1150–1167CrossRefPubMedGoogle Scholar
  6. 6.
    Duperron S (2010) The diversity of deep-sea mussels and their bacterial symbioses. In: Kiel S (ed) The vent and seep biota. Springer, Netherlands, pp 137–167Google Scholar
  7. 7.
    Raggi L, Schubotz F, Hinrichs K-U et al (2012) Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the southern Gulf of Mexico. Environ Microbiol 15:1969–1987CrossRefPubMedGoogle Scholar
  8. 8.
    Rodrigues CF, Cunha MR, Genio L, Duperron S (2013) A complex picture of associations between two host mussels and symbiotic bacteria in the Northeast Atlantic. Naturwissenschaften 100:21–31CrossRefPubMedGoogle Scholar
  9. 9.
    Gros O, Liberge M, Heddi A et al (2003) Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl Environ Microbiol 69:6254–6257CrossRefGoogle Scholar
  10. 10.
    Harmer TL, Rotjan RD, Nussbaumer AD et al (2008) Free-living tube worm endosymbionts found at deep-sea vents. Appl Environ Microbiol 74:3895–3898CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Petersen JM, Wentrup C, Verna C et al (2012) Origins and evolutionary flexibility of chemosynthetic symbionts from Deep-Sea animals. Biol Bull 223:123–137CrossRefPubMedGoogle Scholar
  12. 12.
    Szafranski KM, Gaudron SM, Duperron S (2014) Direct evidence for maternal inheritance of bacterial symbionts in small deep-sea clams (Bivalvia: Vesicomyidae). Naturwissenschaften 101:373–383CrossRefPubMedGoogle Scholar
  13. 13.
    Vuillemin R, Le Roux D, Dorval P et al (2009) CHEMINI: A new in situ CHEmical MINIaturized analyzer. Deep Sea Res Part Oceanogr Res Pap 56:1391–1399CrossRefGoogle Scholar
  14. 14.
    Wankel SD, Huang Y, Gupta M et al (2013) Characterizing the distribution of methane sources and cycling in the deep sea via in situ stable isotope analysis. Environ Sci Technol 47:1478–1486PubMedGoogle Scholar
  15. 15.
    Carlier A, Ritt B, Rodrigues CF et al (2010) Heterogeneous energetic pathways and carbon sources on deep eastern Mediterranean cold seep communities. Mar Biol 157:2545–2565CrossRefGoogle Scholar
  16. 16.
    Halary S, Riou V, Gaill F et al (2008) 3D FISH for the quantification of methane- and sulphur-oxidising endosymbionts in bacteriocytes of the hydrothermal vent mussel Bathymodiolus azoricus. ISME J 2:284–292CrossRefPubMedGoogle Scholar
  17. 17.
    Lorion J, Halary S, do Nascimento J et al (2012) Evolutionary history of Idas sp. Med, (Bivalvia: Mytilidae), a cold seep mussel bearing multiple symbionts. Cah Biol Mar 53:77–87Google Scholar
  18. 18.
    Stewart FJ, Young CR, Cavanaugh CM (2008) Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis. Mol Biol Evol 25:673–683CrossRefPubMedGoogle Scholar
  19. 19.
    Decker C, Olu K, Arnaud-Haond S, Duperron S (2013) Physical proximity may promote lateral acquisition of bacterial symbionts in vesicomyid clams. PLoS One 8(7):e64830CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shillito B, Jollivet D, Sarradin PM et al (2001) Temperature resistance of Hesiolyra bergi, a polychaetous annelid living on vent smoker walls. Mar Ecol Prog Ser 216:141–149CrossRefGoogle Scholar
  21. 21.
    Shillito B, Gaill F, Ravaux J (2014) The ipocamp pressure incubator for deep-sea fauna. J Mar Sci Technol Taiwan 22:97–102Google Scholar
  22. 22.
    Pradillon F, Shillito B, Chervin JC et al (2004) Pressure vessels for in vivo studies of deep-sea fauna. High Press Res 24:237–246CrossRefGoogle Scholar
  23. 23.
    Shillito B, Hamel G, Duchi C et al (2008) Live capture of megafauna from 2300 m depth, using a newly designed Pressurized Recovery Device. Deep-Sea Res Part -Oceanogr Res Pap 55:881–889CrossRefGoogle Scholar
  24. 24.
    Mullineaux LS, Mills SW, Sweetman AK et al (2005) Vertical, lateral and temporal structure in larval distributions at hydrothermal vents. Mar Ecol Prog Ser 293:1–16CrossRefGoogle Scholar
  25. 25.
    Beaulieu SE, Mullineaux LS, Adams DK, Mills SW (2009) Comparison of a sediment trap and plankton pump for time-series sampling of larvae near deep-sea hydrothermal vents. Limnol Oceanogr Methods 7:235–248CrossRefGoogle Scholar
  26. 26.
    Gaudron SM, Pradillon F, Pailleret M et al (2010) Colonization of organic substrates deployed in deep-sea reducing habitats by symbiotic species and associated fauna. Mar Env Res 70:1–12CrossRefGoogle Scholar
  27. 27.
    Gros O, Maurin LC (2008) Easy flat embedding of oriented samples in hydrophilic resin (LR White) under controlled atmosphere: application allowing both nucleic acid hybridizations (CARD-FISH) and ultrastructural observations. Acta Histochem 110:427–431CrossRefPubMedGoogle Scholar
  28. 28.
    Verna C, Ramette A, Wiklund H et al (2010) High symbiont diversity in the bone-eating worm Osedax mucofloris from shallow whale-falls in the North Atlantic. Environ Microbiol 12:2355–2370CrossRefPubMedGoogle Scholar
  29. 29.
    Duperron S, De Beer D, Zbinden M et al (2009) Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean. FEMS Microbiol Ecol 69:395–409CrossRefPubMedGoogle Scholar
  30. 30.
    Zimmermann J, Lott C, Weber M et al (2014) Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent. Environ Microbiol 16:3638–3656CrossRefPubMedGoogle Scholar
  31. 31.
    Lösekann T, Robador A, Niemann H et al (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic Cold Seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10:3237–3254CrossRefPubMedGoogle Scholar
  32. 32.
    Nussbaumer AD, Fisher CR, Bright M (2006) Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441:345–348CrossRefPubMedGoogle Scholar
  33. 33.
    Goffredi SK, Orphan VJ, Rouse GW et al (2005) Evolutionary innovation: a bone-eating marine symbiosis. Environ Microbiol 7:1369–1378CrossRefPubMedGoogle Scholar
  34. 34.
    Polz MF, Cavanaugh CM (1995) Unique dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Nat Acad Sci USA 92:7232–7236CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Petersen JM, Ramette A, Lott C et al (2010) Dual symbiosis of the vent shrimp Rimicaris exoculata with filamentous gamma- and epsilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields. Environ Microbiol 12:2204–2218PubMedGoogle Scholar
  36. 36.
    Duperron S, Pottier M-A, Leger N et al (2013) A tale of two chitons: is habitat specialisation linked to distinct associated bacterial communities? FEMS Microbiol Ecol 83:552–567CrossRefPubMedGoogle Scholar
  37. 37.
    Rodrigues CF, Duperron S (2011) Distinct symbiont lineages in three thyasirid species (Bivalvia: Thyasiridae) form the eastern Atlantic and Mediterranean Sea. Naturwissenschaften 98:281–287CrossRefPubMedGoogle Scholar
  38. 38.
    Distel DL, Beaudoin DJ, Morrill W (2002) Coexistence of multiple proteobacterial endosymbionts in the gills of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Appl Environ Microbiol 2002:6292–6299CrossRefGoogle Scholar
  39. 39.
    Wentrup C, Wendeberg A, Schimak M et al (2014) Forever competent: deep-sea bivalves are colonized by their chemosynthetic symbionts throughout their lifetime. Environ Microbiol 16:3699–3713CrossRefPubMedGoogle Scholar
  40. 40.
    Duperron S, Rodrigues CF, Leger N et al (2012) Diversity of symbioses between chemosynthetic bacteria and metazoans at the Guiness cold seep site (Gulf of Guinea, West Africa). MicrobiologyOpen 1:467–480CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Duperron S, Nadalig T, Caprais JC et al (2005) Dual symbiosis in a Bathymodiolus mussel from a methane seep on the Gabon continental margin (South East Atlantic): 16S rRNA phylogeny and distribution of the symbionts in the gills. Appl Environ Microbiol 71:1694–1700CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Duperron S, Sibuet M, MacGregor BJ et al (2007) Diversity, relative abundance, and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussels (Bivalvia: Mytilidae) from cold seeps in the Gulf of Mexico. Env Microbiol 9:1423–1438CrossRefGoogle Scholar
  43. 43.
    Distel DL, Cavanaugh CM (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Distel DL, Lee HKW, Cavanaugh CM (1995) Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. Proc Natl Acad Sci USA 92:9598–9602CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Duperron S, Bergin C, Zielinski F et al (2006) A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and B. puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol 8:1441–1447CrossRefPubMedGoogle Scholar
  46. 46.
    Duperron S, Halary S, Lorion J et al (2008) Unexpected co-occurrence of 6 bacterial symbionts in the gill of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environ Microbiol 10:433–445CrossRefPubMedGoogle Scholar
  47. 47.
    Urakawa H, Dubilier N, Fujiwara Y et al (2005) Hydrothermal vent gastropods from the same family (Provannidae) harbour ε- and γ-proteobacterial endosymbionts. Environ Microbiol 7:750–754CrossRefPubMedGoogle Scholar
  48. 48.
    Bates AE, Harmer TL, Roeselers G, Cavanaugh CM (2011) Phylogenetic characterization of episymbiotic bacteria hosted by a hydrothermal vent limpet (Lepetodrilidae, Vetigastropoda). Biol Bull 220:118–127CrossRefPubMedGoogle Scholar
  49. 49.
    Cavanaugh CM, Levering PR, Maki JS et al (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–347CrossRefGoogle Scholar
  50. 50.
    Fiala-Médioni A, McKiness ZP, Dando P et al (2002) Ultrastructural, biochemical and immunological characterisation of two populations of the Mytilid mussel Bathymodiolus azoricus from the Mid Atlantic Ridge: evidence for a dual symbiosis. Mar Biol 141:1035–1043CrossRefGoogle Scholar
  51. 51.
    Lorion J, Buge B, Cruaud C, Samadi S (2010) New insights into diversity and evolution of deep-sea Mytilidae (Mollusca: Bivalvia). Mol Phyl Evol 57:71–83CrossRefGoogle Scholar
  52. 52.
    Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalysed reporter deposition for the identification of marine Bacteria. Appl Environ Microbiol 68:3094–3101CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Stoecker K, Dorninger C, Daims H, Wagner M (2010) Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol 76:922–926CrossRefPubMedGoogle Scholar
  54. 54.
    Pond DW, Bell MV, Dixon DR et al (1998) Stable-carbon-isotope composition of fatty acids in hydrothermal vent mussels containing methanotrophic and thiotrophic bacterial endosymbionts. Appl Environ Microbiol 64:370–375PubMedPubMedCentralGoogle Scholar
  55. 55.
    Guezi H, Boutet I, Andersen AC et al (2014) Comparative analysis of symbiont ratios and gene expression in natural populations of two Bathymodiolus mussel species. Symbiosis 63:19–29CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Sorbonne Universités, UPMC Université Paris 06, UMR 7208 BOREA, Adaptation aux Milieux ExtrêmesParisFrance
  2. 2.Institut Universitaire de FranceParisFrance

Personalised recommendations