Skip to main content

Real-Time PCR Approaches for Analysis of Hydrocarbon-Degrading Bacterial Communities

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Since the development of the polymerase chain reaction (PCR) in the 1980s, our knowledge of environmental microbial diversity and function has increased greatly. However, quantification of particular environmental microbes by “endpoint PCR” techniques has typically been inaccurate due to inherent limitations and biases introduced during amplification. Such problems were overcome in the 1990s following the development of “real-time PCR” methods that employ highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction as each cycle occurs (i.e. in real time). Real-time PCR is now widely employed for measuring 16S rRNA gene and functional gene abundance and expression in the environment and has included numerous studies of hydrocarbon-degrading bacteria, and the technique has promising possibilities as a tool for assessing hydrocarbon-contaminated environments and monitoring natural attenuation or bioremediation techniques. This chapter looks at the kinetics of PCR to explain the benefits of real-time PCR over traditional endpoint PCR and discusses the most popular detection chemistries and how they allow accurate quantification. Guidelines are provided for the design of real-time PCR primers and probes, and detailed protocols are given for both TaqMan and SYBR Green assays for quantifying gene abundance, as well as a two-step reverse transcription real-time PCR protocol for quantifying gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain-reaction. Methods Enzymol 155:335–350

    Article  CAS  PubMed  Google Scholar 

  2. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA-polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  3. Becker S, Boger P, Oehlmann R, Ernst A (2000) PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl Environ Microbiol 66:4945–4953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki M, Rappe MS, Giovannoni SJ (1998) Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl Environ Microbiol 64:4522–4529

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    CAS  PubMed  PubMed Central  Google Scholar 

  7. von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  8. Diviacco S, Norio P, Zentilin L, Menzo S, Clementi M, Biamonti G et al (1992) A novel procedure for quantitative polymerase chain-reaction by coamplification of competitive templates. Gene 122:313–320

    Article  CAS  PubMed  Google Scholar 

  9. Gilliland G, Perrin S, Blanchard K, Bunn HF (1990) Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci 87:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Higuchi R, Dollinger G, Walsh PS, Griffith R (1992) Simultaneous amplification and detection of specific DNA-sequences. Biotechnology 10:413–417

    Article  CAS  PubMed  Google Scholar 

  11. Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis - real-time monitoring of DNA amplification reactions. Biotechnology 11:1026–1030

    Article  CAS  PubMed  Google Scholar 

  12. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  13. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130–138

    CAS  PubMed  Google Scholar 

  14. Mathieu-Daude F, Welsh J, Vogt T, McClelland M (1996) DNA rehybridization during PCR: the ‘C(O)t effect’ and its consequences. Nucleic Acids Res 24:2080–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kainz P (2000) The PCR plateau phase – towards an understanding of its limitations. Biochim Biophys Acta 1494:23–27

    Article  CAS  PubMed  Google Scholar 

  16. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  PubMed  Google Scholar 

  17. Whitcombe D, Theaker J, Guy SP, Brown T, Little S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17:804–807

    Article  CAS  PubMed  Google Scholar 

  18. Knudtson KL, Adams PS, Grove DS, Hollingshead DJ, Hunter TC, Shipley GL (2007) The ABRF NARG real-time PCR survey 2007: taking the pulse of the quantitative PCR field

    Google Scholar 

  19. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′ (Holland et al., 1991) 3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci 88:7276–7280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rebrikov DV, Trofimov DY (2006) Real-time PCR: a review of approaches to data analysis. Appl Biochem Microbiol 42:455–463

    Article  CAS  Google Scholar 

  21. Smith CJ, Nedwell DB, Dong LF, Osborn AM (2006) Evaluation of quantitative polymerase chain reaction-based approaches for determining gene copy and gene transcript numbers in environmental samples. Environ Microbiol 8:804–815

    Article  CAS  PubMed  Google Scholar 

  22. Stults JR, Snoeyenbos-West O, Methe B, Lovley DR, Chandler DP (2001) Application of the 5 ′ fluorogenic exonuclease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments. Appl Environ Microbiol 67:2781–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–119

    CAS  PubMed  Google Scholar 

  24. Johnson DR, Lee PKH, Holmes VF, Alvarez-Cohen L (2005) An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with a application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 71:3866–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith CJ (2005) Quantitative real time PCR. In: Osborn AM, Smith CJ (eds) Molecular microbial ecology. Taylor & Francis, New York

    Google Scholar 

  26. Thornton B, Basu C (2011) Real-time PCR (qPCR) primer design using free online software. Biochem Mol Biol Educ 39:145–154

    Article  CAS  PubMed  Google Scholar 

  27. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  28. Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley G, Wittwer CT, Schjerling P, Day PJ, Abreu M, Aguado B, Beaulieu JF, Beckers A, Bogaert S, Browne JA, Carrasco-Ramiro F, Ceelen L, Ciborowski K, Cornillie P, Coulon S, Cuypers A, De Brouwer S, De Ceuninck L, De Craene J, De Naeyer H, De Spiegelaere W, Deckers K, Dheedene A, Durinck K, Ferreira-Teixeira M, Fieuw A, Gallup JM, Gonzalo-Flores S, Goossens K, Heindryckx F, Herring E, Hoenicka H, Icardi L, Jaggi R, Javad F, Karampelias M, Kibenge F, Kibenge M, Kumps C, Lambertz I, Lammens T, Markey A, Messiaen P, Mets E, Morais S, Mudarra-Rubio A, Nakiwala J, Nelis H, Olsvik PA, Pérez-Novo C, Plusquin M, Remans T, Rihani A, Rodrigues-Santos P, Rondou P, Sanders R, Schmidt-Bleek K, Skovgaard K, Smeets K, Tabera L, Toegel S, Van Acker T, Van den Broeck W, Van der Meulen J, Van Gele M, Van Peer G, Van Poucke M, Van Roy N, Vergult S, Wauman J, Tshuikina-Wiklander M, Willems E, Zaccara S, Zeka F, Vandesompele J (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10(11):1063–1067

    Article  CAS  PubMed  Google Scholar 

  29. Taylor SC, Mrkusich EM (2014) The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE). J Mol Microbiol Biotechnol 24:46–52

    Article  CAS  PubMed  Google Scholar 

  30. Baker M (2012) Digital PCR hits its stride. Nat Methods 9:541–544

    Article  CAS  Google Scholar 

  31. Whale AS, Cowen S, Foy CA, Huggett JF (2013) Methods for applying accurate digital PCR analysis on low copy DNA samples. PLoS One. doi:10.1371/journal.pone.0058177

    PubMed  PubMed Central  Google Scholar 

  32. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, Hellemans J, Kubista M, Mueller RD, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT, Bustin SA (2013) The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem 59:892–902

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyd A. McKew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

McKew, B.A., Smith, C.J. (2015). Real-Time PCR Approaches for Analysis of Hydrocarbon-Degrading Bacterial Communities. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_64

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_64

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52776-4

  • Online ISBN: 978-3-662-52778-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics