Application of Microcosm and Mesocosm Experiments to Pollutant Effects in Biofilms

Part of the Springer Protocols Handbooks book series (SPH)


The search for causal relationships of the effects of pollutants on biofilms requires experimental alternatives that allow careful hypothesis testing. Mesocosms are designed to replicate river ecosystems, and their manipulation translates to similar effects to be expected in real ecosystems. Microcosms allow even simple experimental conditions and much higher replication than the ones in mesocosms, though the scale is far smaller than the one existing in a real ecosystem. Observations from microcosm and mesocosm experiments are complementary to field observations, and results may shed light to patterns described in natural ecosystems.


Biofilms Field observations Mesococosm Microcosm Pollutants 


  1. 1.
    Sabater S, Borrego CM (2015) Field and in-situ studies. Springer Protocols Handb. doi:  10.1007/8623_2015_171 Google Scholar
  2. 2.
    Proia L, Morin S, Peipoch M, Romaní AM, Sabater S (2011) Resistance and recovery of river biofilms receiving short pulses of Triclosan and Diuron. Sci Total Environ 409:3129–3137CrossRefPubMedGoogle Scholar
  3. 3.
    Navarro E, Guasch H, Muñoz I, Real M, Sabater S (2000) Aplicación de un sistema de canales artificiales en el estudio ecotoxicológico de comunidades microbentónicas. Limnetica 18:1–14Google Scholar
  4. 4.
    Ramos C, Licht TR, Sternberg C, Krogfelt KA, Molin S (2001) Monitoring bacterial growth activity in biofilms from laboratory flow chambers, plant rhizosphere, and animal intestine. Methods Enzymol 337:21–42CrossRefPubMedGoogle Scholar
  5. 5.
    Rychert K, Neu TR (2011) Protozoan impact on bacterial biofilm formation. Biol Lett 47:3–10Google Scholar
  6. 6.
    Zippel B, Rijstenbil J, Neu TR (2007) A flow-lane incubator for studying freshwater and marine phototrophic biofilms. J Microbiol Methods 70:336–345CrossRefPubMedGoogle Scholar
  7. 7.
    Guasch H, Serra A (2009) Uso de ríos artificiales en ecología fluvial. In: Elosegi A, Sabater S (eds) Conceptos y técnicas en ecología fluvial. FBBVA Editions, MadridGoogle Scholar
  8. 8.
    Rodgers JH, Crossland NO, Kline ER, Gillespie WB, Figueroa RA, Dorn PB (1996) Design and construction of model stream ecosystems. Ecotoxicol Environ Saf 33:30–37CrossRefPubMedGoogle Scholar
  9. 9.
    Ricart M, Barceló D, Geiszinger A, Guasch H, López de Alda M, Romaní AM, Vidal G, Villagrasa M, Sabater S (2009) Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76(10):1392–1401CrossRefPubMedGoogle Scholar
  10. 10.
    Proia L, Vilches C, Boninneau C, Kantiani L, Farrè M, Romaní A, Sabater S, Guasch H (2013) Drought episode modulate biofilm response to pulses of Triclosan. Aquat Toxicol 127:36–45CrossRefPubMedGoogle Scholar
  11. 11.
    Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118CrossRefGoogle Scholar
  12. 12.
    Porter KG, Feig YS (1980) The use of DAPI for counting and identifying aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  13. 13.
    Weinbauer MG, Beckmann C, Höfle MG (1998) Utility of green fluorescent nucleic acid dyes and aluminium oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Appl Environ Microbiol 64:5000–5003PubMedPubMedCentralGoogle Scholar
  14. 14.
    Cangelosi GA, Meschke JS (2014) Dead or alive: molecular assessment of microbial viability. Appl Environ Microbiol 80:5884–5891CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Davey HM (2011) Life, death, and in-between: meanings and methods in microbiology. Appl Environ Microbiol 77:5571–5576CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Freese HM, Karsten U, Schumann R (2006) Bacterial abundance, activity, and viability in the eutrophic River Warnow, northeast Germany. Microb Ecol 51:117–127CrossRefPubMedGoogle Scholar
  17. 17.
    Ricart M, Guasch H, Alberch M, Barceló D, Bonnineau C, Geiszinger A, Farré M, Ferrer J, Ricciardi F, Romaní AM, Morin S, Proia L, Sala L, Sureda D, Sabater S (2010) Triclosan persistence through wastewater treatment plants and its potential: toxic effects on river biofilms. Aquat Toxicol 100:346–353CrossRefPubMedGoogle Scholar
  18. 18.
    Savichtcheva O, Okayama N, Ito T, Okabe S (2005) Application of a direct fluorescence-based live/dead staining combined with fluorescence in situ hybridization for assessment of survival rate of Bacteroides spp. in drinking water. Biotechnol Bioeng 92:356–363CrossRefPubMedGoogle Scholar
  19. 19.
    Netuschil L, Auschill TM, Sculean A, Arweiler NB (2014) Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms-which stain is suitable? BMC Oral Health 14:2–12CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sträuber H, Müller S (2010) Viability states of bacteria – specific mechanisms of selected probes. Cytometry A 77:623–634CrossRefPubMedGoogle Scholar
  21. 21.
    Dupont CL, Chappell D, Logares R, Vila-costa M (2010) A hitchhiker’s guide to the new molecular toolbox for ecologists. Eco-DAS VIII Symp Proc 2:17–29Google Scholar
  22. 22.
    Logares R, Haverkamp TH, Kumar S, Lanzén A, Nederbragt AJ, Quince C, Kauserud H (2012) Environmental microbiology through the lens of high-throughput DNA sequencing: synopsis of current platforms and bioinformatics approaches. J Microbiol Methods 91:106–113CrossRefPubMedGoogle Scholar
  23. 23.
    Sinclair L, Osman OA, Bertilsson S, Eiler A (2015) Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS One 10, e0116955CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Porra RJ (2006) Spectrometric assays for plant, algal and bacterial chlorophylls. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, vol 25, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 95–107CrossRefGoogle Scholar
  25. 25.
    Garrido JL, Zapata M (2006) Chlorophyll analysis by new high performance liquid chromatography methods. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, vol 25, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 109–121CrossRefGoogle Scholar
  26. 26.
    Smith JHC, Benitez A (1955) Chlorophylls: analysis in plant materials. In: Paech K, Tracey MV (eds) Modern methods of plant analysis, vol IV. Springer, Berlin, pp 142–196Google Scholar
  27. 27.
    Schreiber U, Schliwaand U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62CrossRefPubMedGoogle Scholar
  28. 28.
    Bilger W, Bjorkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185CrossRefPubMedGoogle Scholar
  29. 29.
    Corcoll N, Bonet B, Leira M, Montuelle B, Tlili A, Guasch H (2012) Light history influences the response of fluvial biofilms to Zn exposure. J Phycol 48:1–13CrossRefGoogle Scholar
  30. 30.
    Hoppe H-G, Kim S-J, Gocke K (1988) Microbial decomposition in aquatic environments: combined process of extracellular enzyme activity and substrate uptake. Appl Environ Microbiol 54:784–790PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kemp PF, Cole JJ, Sherr BF (1993) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca RatonGoogle Scholar
  32. 32.
    Ylla I, Borrego CM, Romaní AM, Sabater S (2009) Availability of glucose and light modulates the structure and function of a microbial biofilm. FEMS Microbiol Ecol 69:27–42CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Aquatic EcologyUniversity of GironaGironaSpain
  2. 2.Catalan Institute for Water Research -ICRAScientific and Technological Park of the University of GironaGironaSpain

Personalised recommendations