Multiplex Fluorescent Antibody Microarrays and Antibody Graphs for Microbial and Biomarker Detection in the Environment

  • Yolanda Blanco
  • Mercedes Moreno-Paz
  • Jacobo Aguirre
  • Victor Parro
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

We describe a rapid protocol for multiplex fluorescent sandwich microarray immunoassay (FSMI) for detecting microorganisms and biomarkers in environmental samples. An FSMI consists basically in two steps: (i) specific binding of antigens (or any recognizable analyte in a sample) to the immobilized antibodies (capturing antibodies) on a microarray and (ii) revealing specific antigen-antibody binding by fluorescently labelled antibodies (tracer or detector antibodies). Because multiplexing immunoassays may produce cross-reaction events, we have developed a method, based on graph theory, to disentangle such cross-reactions associated to an antibody microarray. First, we need to generate an antibody graph from the experimental cross-reactivity test of each antigen with its fluorescent antibody (tracer) by FSMI on the whole microarray. From the matrix of quantified fluorescence, it is possible to establish a weighted correlation between each cognate antigen-antibody pair and other antibodies printed on the microarray. Then, deconvolution methods allow disentangling the cross-reaction events and discriminate between true cognate antigen-antibody recognition from others due to related antigenic structures. Therefore, the multiplex FSMI implemented with antibody graphs is a powerful technique for the analysis and characterization of environmental samples, in the identification and monitoring of the microbial diversity or the detection of microbial biomarkers that might be relevant for hydrocarbon microbiology.

Keywords:

Antibody microarray Biosensor Deconvolution method Environmental monitoring Graph theory Multiplex sandwich microarray immunoassay 

References

  1. 1.
    Schloter M, Assmus B, Hartmann A (1995) The use of immunological methods to detect and identify bacteria in the environment. Biotechnol Adv 13:75–90CrossRefPubMedGoogle Scholar
  2. 2.
    Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors: principles and applications to clinical chemistry. Clin Chim Acta 314:1–26CrossRefPubMedGoogle Scholar
  3. 3.
    Lim DV, Dimpson JM, Kearns EA, Kramer MF (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18:583–607CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Parro V, Fernández-Calvo P, Rodríguez-Manfredi JA, Moreno-Paz M, Rivas LA, García-Villadangos M, Bonaccorsi R, González-Pastor JE, Prieto-Ballesteros O, Schuerger AC, Davidson M, Gómez-Elvira J, Stoker C (2008) SOLID2: an antibody array-based life-detector instrument in a Mars drilling simulation experiment (MARTE). Astrobiology 8:987–999CrossRefPubMedGoogle Scholar
  5. 5.
    Van Dorst B, Mehta J, Bekaert K, Rouah-Martín E, De Coen W, Dubruel P, Blust R, Robbens J (2010) Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 26:1178–1194CrossRefPubMedGoogle Scholar
  6. 6.
    Bartosch S, Wolgast I, Spieck E, Bock E (1999) Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase. Appl Environ Microbiol 65:4126–4133PubMedPubMedCentralGoogle Scholar
  7. 7.
    Fiencke C, Bock E (2004) Genera-specific immunofluorescence labelling of ammonia oxidizers with polyclonal antibodies recognizing both subunits of the ammonia monooxygenase. Microb Ecol 47:374–384CrossRefPubMedGoogle Scholar
  8. 8.
    Marimon JM, Monasterio A, Ercibengoa M, Pascual J, Prieto I, Simón L, Pérez-Trallero EJ (2010) Antibody microarray typing, a novel technique for Streptococcus pneumoniae serotyping. J Microbiol Methods 80:274–280CrossRefPubMedGoogle Scholar
  9. 9.
    Rivas LA, García-Villadangos M, Moreno-Paz M, Cruz-Gil P, Gómez-Elvira J, Parro V (2008) A 200-antibody microarray biochip for environmental monitoring: searching for universal microbial biomarkers through immunoprofiling. Anal Chem 80:7970–7979CrossRefPubMedGoogle Scholar
  10. 10.
    Rivas LA, Aguirre J, Blanco Y, González-Toril E, Parro V (2011) Graph-based deconvolution analysis of multiplex sandwich microarray immunoassays: applications for environmental monitoring. Environ Microbiol 13:1421–1432CrossRefPubMedGoogle Scholar
  11. 11.
    Parro V, de Diego-Castilla G, Moreno-Paz M, Blanco Y, Cruz-Gil P, Rodríguez-Manfredi JA, Fernández-Remolar D, Gómez F, Gómez MJ, Rivas LA, Demergasso C, Echeverría A, Urtuvia VN, Ruiz-Bermejo M, García-Villadangos M, Postigo M, Sánchez-Román M, Chong-Díaz G, Gómez-Elvira J (2011) A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. Astrobiology 11:969–996CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Blanco Y, Prieto-Ballesteros O, Gómez MJ, Moreno-Paz M, García-Villadangos M, Rodríguez-Manfredi JA, Cruz-Gil P, Sánchez-Román M, Rivas LA, Parro V (2012) Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception island (Antarctica). Environ Microbiol 13:2495–2510CrossRefGoogle Scholar
  13. 13.
    Ellington AA, Kullo IJ, Bailey KR, Klee GG (2010) Antibody-based protein multiplex platforms: technical and operational challenges. Clin Chem 56:186–193CrossRefPubMedGoogle Scholar
  14. 14.
    Han MK, Hong MY, Lee D, Lee DE, Noh GY, Lee JH, Kim SH, Kim HS (2006) Expression profiling of proteins in L-threonine biosynthetic pathway of Escherichia coli by using antibody microarray. Proteomics 6:5929–5940CrossRefPubMedGoogle Scholar
  15. 15.
    González RM, Seurynck-Servoss SL, Crowley SA, Brown M, Omen GS, Hayes DF, Zangar RC (2008) Development and validation of sandwich ELISA microarrays with minimal assay interference. J Proteome Res 7:2406–2414CrossRefPubMedGoogle Scholar
  16. 16.
    Michaud GA, Salcius M, Zhou F, Bangham R, Bonin J, Guo H, Snyder M, Predki PF, Schweitzer BI (2003) Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol 21:1509–1512CrossRefPubMedGoogle Scholar
  17. 17.
    Saviranta P, Ryan O, Brinker A, Warashina M, Eppinger J, Geierstanger BH (2004) Evaluating sandwich immunoassays in microarray format in terms of the ambient analyte regime. Clin Chem 50:1907–1920CrossRefPubMedGoogle Scholar
  18. 18.
    Blanco Y, Rivas LA, García-Moyano A, Aguirre J, Cruz-Gil P, Palacín A, van Heerden E, Parro V (2014) Deciphering the prokaryotic community and metabolisms in South African deep-mine biofilms through antibody microarrays and graph theory. PLoS One 9(12):e114180. doi:10.1371/journal.pone.0114180 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Blanco Y, Quesada A, Gallardo-Carreño I, Aguirre J, Parro V (2015) CYANOCHIP: an antibody microarray for high-taxonomical-resolution cyanobacterial monitoring. Environ Sci Technol. doi:10.1021/es5051106 Google Scholar
  20. 20.
    Tuross N, Stathoplos L (1993) Ancient proteins in fossil bones. Methods Enzymol 224:121–129CrossRefPubMedGoogle Scholar
  21. 21.
    Schweitzer MH, Wittmeyer JL, Avci R, Pincus S (2005) Experimental support for an immunological approach to the search for life on other planets. Astrobiology 5:30–47CrossRefPubMedGoogle Scholar
  22. 22.
    Schweitzer MH, Wittmeyer JL, Horner JR, Toporski JK (2005) Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science 307:1952–1955CrossRefPubMedGoogle Scholar
  23. 23.
    Schmidt MWI, Knicker H, Hatcher PG, Kögel-Knabner I (1997) Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid. Eur J Soil Sci 48:319–328CrossRefGoogle Scholar
  24. 24.
    Parro V, de Diego-Castilla G, Rodríguez-Manfredi JA, Rivas LA, Blanco-López Y, Sebastián E, Romeral J, Compostizo C, Herrero PL, García-Marín A, Moreno-Paz M, García-Villadangos M, Cruz-Gil P, Peinado V, Martín-Soler J, Pérez-Mercader J, Gómez-Elvira J (2011) SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration. Astrobiology 11:15–27CrossRefPubMedGoogle Scholar
  25. 25.
    Nielsen UB, Geierstanger BH (2004) Multiplexed sandwich assays in microarray format. J Immunol Methods 290:107–120CrossRefPubMedGoogle Scholar
  26. 26.
    Palacín A, Gómez-Casado C, Rivas LA, Aguirre J, Tordesillas L, Bartra J, Blanco C, Carrillo T, Cuesta-Herranz J, de Frutos C, Alvarez-Eire GG, Fernández FJ, Gamboa P, Muñoz R, Sánchez-Monge R, Sirvent S, Torres MJ, Varela-Losada S, Rodríguez R, Parro V, Blanca M, Salcedo G, Díaz-Perales A (2012) Graph based study of allergen cross-reactivity of plant lipid transfer proteins (LTPs) using microarray in a multicenter study. PLoS One 7(9):e44088. doi:10.1371/journal.pone.0050799 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yolanda Blanco
    • 1
  • Mercedes Moreno-Paz
    • 1
  • Jacobo Aguirre
    • 2
  • Victor Parro
    • 1
  1. 1.Department of Molecular EvolutionCentro de Astrobiología (INTA-CSIC)MadridSpain
  2. 2.Centro Nacional de Biotecnología (CSIC)MadridSpain

Personalised recommendations