Skip to main content

Protocol for the Standardisation of Transcriptional Measurements

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

A key component of the engineering approach underlying synthetic biology is the use of standardisation to enable better design of biological systems. One of the most important areas to standardise is the measurement of part, device and system activity in order to improve designs and aid sharing of data. While methods for standardising transcriptional measurements have been designed, they have suffered from poor uptake, and as more parts and systems are detailed, potentially useful information and comparison may be being lost. This protocol takes the best of the previously developed standards while adding some advice for best practice and data standardisation, designed to improve the ease with which data collected in separate labs may be shared and used. Standardisation of measurements and data has the potential to allow greater understanding of the biological systems synthetic biologists engineer and in turn lead to better tools to allow the design of larger and more complicated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lou C, Stanton B, Chen Y-J, Munsky B, Voigt CA (2012) Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol 30(11):1137–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai QA et al (2013) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10(4):354–360

    Article  CAS  PubMed  Google Scholar 

  3. Casini A, Macdonald JT, Jonghe JD, Christodoulou G, Freemont PS, Baldwin GS et al (2014) One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy. Nucleic Acids Res 42(1), e7, Epub 2013/10/25

    Article  CAS  PubMed  Google Scholar 

  4. Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S (2012) Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs 3(1):38–43, Epub 2011/12/01

    PubMed  Google Scholar 

  5. Torella JP, Lienert F, Boehm CR, Chen JH, Way JC, Silver PA (2014) Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications. Nat Protoc 9(9):2075–2089, Epub 2014/08/08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai QA, Thimmaiah T et al (2013) Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res 41(9):5139–5148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kosuri S, Goodman DB, Cambray G, Mutalik VK, Gao Y, Arkin AP et al (2013) Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci U S A 110(34):14024–14029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chappell J, Freemont P (2013) In vivo and in vitro characterization of sigma70 constitutive promoters by real-time PCR and fluorescent measurements. Methods Mol Biol 1073:61–74, Epub 2013/09/03

    Article  CAS  PubMed  Google Scholar 

  9. Pothoulakis G, Ceroni F, Reeve B, Ellis T (2014) The spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth Biol 3(3):182–187

    Article  CAS  PubMed  Google Scholar 

  10. Strack RL, Disney MD, Jaffrey SR (2013) A superfolding spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods 10(12):1219–1224, Epub 2013/10/29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun ZZ, Yeung E, Hayes CA, Noireaux V, Murray RM (2014) Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth Biol 3(6):387–397

    Article  CAS  PubMed  Google Scholar 

  12. Chappell J, Jensen K, Freemont PS (2013) Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Res 41(5):3471–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beal J, Weiss R, Yaman F, Davidsohn N, Adler A (2012) A method for fast, high-precision characterization of synthetic biology devices. MIT-CSAIL-TR-2012-008. 2012(008). Epub 2012/4/7 http://hdl.handle.net/1721.1/69973

  14. Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26(7):787–793, Epub 2008/07/10

    Article  CAS  PubMed  Google Scholar 

  15. Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ et al (2009) Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng 3:4, Epub 2009/03/21

    Article  PubMed  PubMed Central  Google Scholar 

  16. Takahashi MK, Chappell J, Hayes CA, Sun ZZ, Kim J, Singhal V et al (2015) Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription–translation (TX-TL) systems. ACS Synth Biol 15(4):503–515

    Article  Google Scholar 

  17. Cardinale S, Joachimiak MP, Arkin AP (2013) Effects of genetic variation on the E. coli host-circuit interface. Cell Rep 4(2):231–237, Epub 2013/07/23

    Article  CAS  PubMed  Google Scholar 

  18. Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139(7):1366–1375, Epub 2010/01/13

    Article  PubMed  PubMed Central  Google Scholar 

  19. Klumpp S (2011) Growth-rate dependence reveals design principles of plasmid copy number control. PLoS One 6(5), e20403, Epub 2011/06/08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. University of Wisconsin E. coli Genome Project. EZ Rich Defined Medium. 2002 [updated 5/5/2003; cited 2014 01 May]. http://www.genome.wisc.edu/resources/protocols/ezmedium.htm.

  21. University of Wisconsin E. coli Genome Project. MOPS Minimal Medium. 2002 [updated 5/5/2003; cited 2014 01 May]. http://www.genome.wisc.edu/resources/protocols/mopsminimal.htm.

  22. Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119(3):736–747

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39(3):1131–1141, Epub 2010/09/17

    Article  CAS  PubMed  Google Scholar 

  24. Temme K, Zhao DH, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci U S A 109(18):7085–7090

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qi L, Haurwitz RE, Shao W, Doudna JA, Arkin AP (2012) RNA processing enables predictable programming of gene expression. Nat Biotechnol 30(10):1002–1006

    Article  CAS  PubMed  Google Scholar 

  26. Quinn J, Beal J, Bhatia S, Cai P, Chen J, Clancy K, et al. Synthetic Biology Open Language Visual (SBOL Visual), version 1.0. 0. 2013

    Google Scholar 

  27. Kneen M, Farinas J, Li YX, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74(3):1591–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N et al (2011) BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J Biol Eng 5:12, Epub 2011/09/22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Herzenberg LA, Tung J, Moore WA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7(7):681–685, Epub 2006/06/21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Jake Beal for useful discussions regarding the standardisation of flow cytometry results. We also thank EPSRC for funding and colleagues in CSynBI particularly Guy Bart-Stan and Tom Ells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Freemont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Hirst, C.D., Ainsworth, C., Baldwin, G., Kitney, R.I., Freemont, P.S. (2015). Protocol for the Standardisation of Transcriptional Measurements. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols . Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_148

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_148

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50430-7

  • Online ISBN: 978-3-662-50432-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics