Skip to main content

Uracil Excision for Assembly of Complex Pathways

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

Despite decreasing prices on synthetic DNA constructs, higher-order assembly of PCR-generated DNA continues to be an important exercise in molecular and synthetic biology. Simplicity and robustness are attractive features met by the uracil excision DNA assembly method, which is one of the most inexpensive technologies available. Here, we describe four different protocols for uracil excision-based DNA editing: one for simple manipulations such as site-directed mutagenesis, one for plasmid-based multigene assembly in Escherichia coli, one for one-step assembly and integration of single or multiple genes into the genome, and a standardized assembly pipeline using benchmarked oligonucleotides for pathway assembly and multigene expression optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  CAS  PubMed  Google Scholar 

  2. Nisson PE, Rashtchian A, Watkins PC (1991) Rapid and efficient cloning of Alu-PCR products using uracil DNA glycosylase. PCR Methods Appl 1:120–123

    Article  CAS  PubMed  Google Scholar 

  3. Smith C, Day PJ, Walker MR (1993) Generation of cohesive ends on PCR products by UDG-mediated excision of dU, and application for cloning into restriction digest-linearized vectors. PCR Methods Appl 2:328–332

    Article  CAS  PubMed  Google Scholar 

  4. Nour-Eldin HH, Hansen BG, Nørholm MHH et al (2006) Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34:e122

    Article  PubMed  PubMed Central  Google Scholar 

  5. Blanusa M, Schenk A, Sadeghi H et al (2010) Phosphorothioate-based ligase-independent gene cloning (PLICing): an enzyme-free and sequence-independent cloning method. Anal Biochem 406:141–146

    Article  CAS  PubMed  Google Scholar 

  6. Tillett D (1999) Enzyme-free cloning: a rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Res 27:26e

    Google Scholar 

  7. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Publ Group 6:343–345

    CAS  Google Scholar 

  9. Bitinaite J, Nichols NM (2001) DNA cloning and engineering by uracil excision. Wiley, Hoboken

    Google Scholar 

  10. Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349–361

    Google Scholar 

  11. LeProust EM, Peck BJ, Spirin K et al (2010) Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res 38:2522–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nielsen MT, Madsen KM, Seppälä S et al (2014) Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli. ACS Synt Biol 4(3):274–282

    Google Scholar 

  13. Nielsen MT, Ranberg JA, Christensen U et al (2014) Microbial synthesis of the forskolin precursor manoyl oxide in enantiomerically pure form. Appl Environ Microbiol 80(23):7258–7265

    Google Scholar 

  14. Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2(5)

    Google Scholar 

  15. Salomonsen B, Mortensen UH, Halkier BA (2014) USER-derived cloning methods and their primer design. Methods Mol Biol (Clifton, NJ) 1116:59–72

    Google Scholar 

  16. Nour-Eldin HH, Geu-Flores F, Halkier BA (2010) USER cloning and USER fusion: the ideal cloning techniques for small and big laboratories. Methods Mol Biol (Clifton, NJ) 643:185–200

    Google Scholar 

  17. Nørholm MHH (2010) A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol 10:21

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cavaleiro AM, Kim SH, Seppälä S et al (2015) Accurate DNA assembly and genome engineering with optimized uracil excision cloning. ACS Synth Biol. doi:10.1021/acssynbio.5b00113

    PubMed  Google Scholar 

  19. St-Pierre F, Cui L, Priest DG et al (2013) One-step cloning and chromosomal integration of DNA. ACS Synt Biol 2(9):537–541

    Google Scholar 

  20. Geu-Flores F, Nour-Eldin HH, Nielsen MT et al (2007) USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucl Acids Res 35, e55

    Article  PubMed  PubMed Central  Google Scholar 

  21. Genee HJ, Bonde MT, Bagger FO et al (2014) Software-supported USER cloning strategies for site-directed mutagenesis and DNA assembly. ACS Synt Biol 4(3):342–349

    Google Scholar 

  22. Nevin DE, Pratt JM (1990) A coupled in vitro transcription-translation system for the exclusive synthesis of polypeptides from the T7-promoter. FEBS Lett 291:259–263

    Article  Google Scholar 

  23. Kudla G, Murray AW, Tollervey D et al (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science (New York, NY). 324:255–258

    Google Scholar 

  24. Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science (New York, N.Y.). 342, 475–479

    Google Scholar 

  25. Olsen LR, Hansen NB, Bonde MT et al (2011) PHUSER (Primer Help for USER): a novel tool for USER fusion primer design. Nucleic Acids Res 39:W61–W67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten H. H. Nørholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Cavaleiro, A.M., Nielsen, M.T., Kim, S.H., Seppälä, S., Nørholm, M.H.H. (2015). Uracil Excision for Assembly of Complex Pathways. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols . Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_133

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_133

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50430-7

  • Online ISBN: 978-3-662-50432-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics