Skip to main content

Isolation of Glycoprotein Bioemulsifiers Produced by Marine Bacteria

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 686 Accesses

Abstract

High-molecular-weight (HMW) surface-active agents (biosurfactants and bioemulsifiers) are produced by many different types of bacteria and comprise proteins, glycoproteins, lipoproteins, polysaccharides, lipopolysaccharides or complexes containing any combination of these structural types. The attraction of HMW glycoprotein bioemulsifiers as ingredients in food and drink formulations, for example, has increased in recent years, especially those produced by marine bacteria, as these amphiphilic macromolecules can offer improved emulsifying and emulsion stability properties. Marine bacteria are a largely untapped source for these types of molecules, and unlike those produced by terrestrial bacteria and microalgae, marine bacterial glycoproteins are often highly negatively charged (polyanionic) which endows these macromolecules with potential multifunctional properties. The polyanionic nature and molecular-weight heterogeneity of these types of molecules require careful attention to optimising their isolation from complex media. This chapter provides a detailed description for optimising the isolation/separation of amphiphilic polyanionic glycoprotein bioemulsifiers produced by marine bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Campos JM, Stamford TL, Sarubbo LA, de Luna JM, Rufino RD, Banat IM (2013) Microbial biosurfactants as additives for food industries: a review. Biotechnol Prog 29:1097–1108

    Article  CAS  PubMed  Google Scholar 

  2. Fracchia L, Cavallo M, Martinotti M, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications – present status and future potentials. In: Ghista DN (ed) Biomedical science, engineering and technology. InTech, Rijeka, Croatia, pp 325–370

    Google Scholar 

  3. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  4. Thavasi R, Banat IM (2014) Chapter 5. Biosurfactant and bioemulsifiers from marine sources. In: Mulligan CN, Sharma SK, Mudhoo A (eds) Biosurfactants Research Trends and Applications, Hardback. CRC, Boca Raton, pp 125–146

    Google Scholar 

  5. Gutierrez T, Berry D, Yang T, Mishamandani S, McKay L, Teske A, Aitken M (2013) Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the deepwater horizon oil spill. PLoS One. doi:10.1371/journal.pone.0067717

    Google Scholar 

  6. Gutierrez T, Shimmield T, Haidon C, Black K, Green DH (2008) Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas species TG12. Appl Environ Microbiol 74:4867–4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gutierrez T, Biller D, Shimmield T, Green DH (2012) Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. BioMetals 25:1185–1194

    Article  CAS  PubMed  Google Scholar 

  8. Thavasi R, Jayalakshmi S, Banat IM (2011) Biosurfactant from marine bacterial isolates. In: Mendez-Vilas A (ed) Current research technology and education topics in applied microbiology and microbial biotechnology book series, vol 2. Formatex Research Center, Badajoz, pp 1367–1373

    Google Scholar 

  9. Ford T, Sacco E, Black J, Kelley T, Goodacre RC, Berkeley RCW, Mitchell R (1991) Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectrometry. Appl Environ Microbiol 57:1595–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kennedy AFD, Sutherland IW (1987) Analysis of bacterial exopolysaccharides. Biotechnol Appl Biochem 9:12–19

    CAS  PubMed  Google Scholar 

  11. Gutierrez T, Morris G, Green DH (2009) Yield and physicochemical properties of EPS from Halomonas sp. Strain TG39 identifies a role for protein and anionic residues (sulfate and phosphate) in emulsification of n-hexadecane. Biotechnol Bioeng 103:207–216

    Article  CAS  PubMed  Google Scholar 

  12. Belsky I, Gutnick DL, Rosenberg E (1979) Emulsifier of Arthrobacter RAG-1: determination of emulsifier-bound fatty acids. FEBS Lett 101:175–178

    Article  CAS  PubMed  Google Scholar 

  13. Garti N, Leser ME (1999) Natural hydrocolloids as food emulsifiers. In: Karsa DR (ed) Design and selection of performance surfactants. Sheffield Academic Press, Sheffield, pp 104–145

    Google Scholar 

  14. Kaplan N, Zosim Z, Rosenberg E (1987) Reconstitution of emulsifying activity of Acinetobacter calcoaceticus BD4 emulsan by using pure polysaccharide and protein. Appl Environ Microbiol 53:440–446

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ron E, Ronserberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  PubMed  Google Scholar 

  16. Kato A (2002) Industrial applications of Maillard-type protein-polysaccharide conjugates. Food Sci Technol Res 8:193–199

    Article  CAS  Google Scholar 

  17. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85

    Article  CAS  Google Scholar 

  18. Banat IM, De Rienzo MAD, Quinn GA (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98:9915–9929

    Article  CAS  PubMed  Google Scholar 

  19. Messner P (1997) Bacterial glycoproteins. Glycoconj J 14:3–11

    Article  CAS  PubMed  Google Scholar 

  20. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. In: Barnes M (ed) Oceanography marine biology annual review. Aberdeen University Press, Aberdeen, pp 73–153

    Google Scholar 

  21. Blackburn SI, Hallegraeff GM, Bolch CJ (1989) Vegetative reproduction and sexual life cycle of the toxic dinoflagellate Gymnodinium catenatum from Tasmania. Aust J Phycol 25:577–590

    Article  Google Scholar 

  22. Gutierrez T, Leo VV, Walker GM, Green DH (2009) Emulsifying properties of a glycoprotein extract produced by a marine Flexibacter species strain TG382. Enzyme Microb Technol 45:53–57

    Article  CAS  Google Scholar 

  23. Gutierrez T, Mulloy B, Bavington C, Black K, Green DH (2007) Partial purification and chemical characterization of a glycoprotein (putative hydrocolloid) emulsifier produced by a marine Antarctobacter species. Appl Microbiol Biotechnol 76:1017–1026

    Article  CAS  PubMed  Google Scholar 

  24. Gutierrez T, Mulloy B, Black K, Green DH (2007) Glycoprotein emulsifiers from two marine Halomonas species: chemical and physical characterization. J Appl Microbiol 103:1716–1727

    Article  CAS  PubMed  Google Scholar 

  25. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cirigliano MC, Carman GM (1984) Isolation of a bio-emulsifier from Candida lipolytica. Appl Environ Microbiol 48:747–750

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Harding SE, Vårum KM, Stokke BT, Smidsrød O (1991) Molecular weight determination of polysaccharides. In: White CA (ed) Advances in carbohydrate analysis, vol 1. JAI, Greenwich, pp 63–144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Gutierrez, T., Banat, I.M. (2015). Isolation of Glycoprotein Bioemulsifiers Produced by Marine Bacteria. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols . Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_128

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_128

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49135-5

  • Online ISBN: 978-3-662-49137-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics