Simulation of Anoxic–Oxic Oscillations in Crude Oil-Degrading Bioreactors

  • Fanny Terrisse
  • Robert Duran
  • Isabelle Vitte
  • Cristiana Cravo-Laureau
Part of the Springer Protocols Handbooks book series (SPH)


Anoxic–oxic oscillations are commonly found in nature, for example, at water–sediment interfaces or in bioturbated sediments. These fluctuating environmental conditions influence the microbial dynamic and thus affect the role of microorganism on the degradation of organic compounds such as hydrocarbons. Little attention has been dedicated to this phenomenon, and therefore, the knowledge on how the anoxic–oxic oscillations may affect the fate of hydrocarbons, their associated toxicity, and the native microbial communities in chronically contaminated environments is still scarce. In order to characterize the ecological responses of hydrocarbonoclastic microbial communities to fluctuating conditions, we present here a protocol describing the incubation of oil-polluted sediments in bioreactors with anoxic–oxic oscillations, coupled with exposure to crude oil.


Anoxic–oxic oscillations Bioreactors systems Environmental fluctuations Hydrocarbons biodegradation Microbial communities 



We acknowledge the support of the urban community of Pau-Pyrénées (France), the French program EC2CO CNRS-INSU (Diverdhy Project), and ANR DECAPAGE (project ANR-CESA-2011-006 01). We would like to thank all partners of the DECAPAGE project and MELODY group for their useful discussions.


  1. 1.
    Cravo-Laureau C, Hernandez-Raquet G, Vitte I et al (2011) Role of environmental fluctuations and microbial diversity in degradation of hydrocarbons in contaminated sludge. Res Microbiol 162:888–895CrossRefPubMedGoogle Scholar
  2. 2.
    Abril G, Commarieu MV, Etcheber H et al (2010) In vitro simulation of oxic/suboxic diagenesis in an estuarine fluid mud subjected to redox oscillations. Estuar Coast Shelf Sci 88:279–291CrossRefGoogle Scholar
  3. 3.
    Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem Geol 114:331–345CrossRefGoogle Scholar
  4. 4.
    Caradec S, Grossi V, Gilbert F et al (2004) Influence of various redox conditions on the degradation of microalgal triacylglycerols and fatty acids in marine sediments. Org Geochem 35:277–287CrossRefGoogle Scholar
  5. 5.
    Sun MY, Lee C, Aller RC (1993) Anoxic and oxic degradation of C-14-labeled chloropigments and a C-14-labeled diatom in long-island sound sediments. Limnol Oceanogr 38:1438–1451CrossRefGoogle Scholar
  6. 6.
    Sun MY, Aller RC, Lee C et al (2002) Effects of oxygen and redox oscillation on degradation of cell-associated lipids in surficial marine sediments. Geochim Cosmochim Acta 66:2003–2012CrossRefGoogle Scholar
  7. 7.
    Vitte I, Duran R, Hernandez-Raquet G et al (2013) Dynamics of metabolically active bacterial communities involved in PAH and toxicity elimination from oil-contaminated sludge during anoxic/oxic oscillations. Appl Microbiol Biotechnol 97:4199–4211CrossRefPubMedGoogle Scholar
  8. 8.
    Vitte I, Duran R, Jezequel R et al (2011) Effect of oxic/anoxic switches on bacterial communities and PAH biodegradation in an oil-contaminated sludge. Environ Sci Pollut Res 18:1022–1032CrossRefGoogle Scholar
  9. 9.
    Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  10. 10.
    Peng RH, Xiong AS, Xue Y et al (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Fanny Terrisse
    • 1
  • Robert Duran
    • 1
  • Isabelle Vitte
    • 1
  • Cristiana Cravo-Laureau
    • 1
  1. 1.Equipe Environnement et Microbiologie, MELODY GroupUniversité de Pau et des Pays de l’Adour, IPREM UMR CNRS 5254, BP 1155Pau CedexFrance

Personalised recommendations