Cultivation of Methylotrophs

  • Donovan P. Kelly
  • Julie K. Ardley
  • Ann P. Wood
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Methylotrophy is the ability of numerous Alpha-, Beta-, and Gammaproteobacteria, Gram-positive bacteria, Actinomycetes, and yeasts to obtain all the energy and carbon required for growth from the metabolism of methyl compounds which have no carbon–carbon bonds. Numerous media and techniques for the isolation and culture of methylotrophs have been described, and a comprehensive description of these protocols is given, with substrates such as methanol, methylamines, and methylated sulfur compounds, and the description of some more complex media. The metabolic and habitat diversity of methylotrophs is outlined, ranging from soil and freshwater organisms, through thermophiles and yeasts, to animal hosts and plant colonisers, including specialised types that induce (and reside in) root nodules in some plant species. The methods for the commercial exploitation of some methylotrophs are outlined. This survey excludes the methanotrophs, growing primarily on gaseous methane, as the cultivation of these is considered elsewhere.

Keywords

Bacillus Hyphomicrobium Methanol Methylamines Methylated sulfur compounds Methylobacterium Plants Proteobacteria Rhizobia Yeast 

Notes

Acknowledgements

We thank all the co-authors of the ‘Working with Rhizobia’ manual, whose work has contributed to the rhizobial section of this chapter: Abdullahi Bala, Rosalind Deaker, Michael Dilworth, Ken Giller, David Herridge, John Howieson, Mariangela Hungria, Nancy Karanja, Vanessa Melino, Sofie De Meyer, Graham O’Hara, Phil Poole, Wayne Reeve, Ricardo Silva Araujo, Ravi Tiwari, Anabel Vivas-Marfisi, Paul Woomer, and Ron Yates.

References

  1. 1.
    Murrell JC, Dalton H (1992) Methane and methanol utilizers. Biotechnology handbooks, vol 5. Springer, New York, 304 ppGoogle Scholar
  2. 2.
    Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 2, 3rd edn. Springer-Verlag, New York, pp 618–634CrossRefGoogle Scholar
  3. 3.
    Whittenbury R, Phillips KC, Wilkinson JE (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218PubMedCrossRefGoogle Scholar
  4. 4.
    Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Ann Rev Microbiol 60:439–471Google Scholar
  5. 5.
    Theisen AR, Murrell JC (2005) Facultative methanotrophs revisited. J Bacteriol 187:4303–4305PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Jordan SL, McDonald IR, Kraczkiewicz-Dowjat AJ, Kelly DP, Rainey FA, Murrell JC, Wood AP (1997) Autotrophic growth on carbon disulfide is a property of novel strains of Paracoccus denitrificans. Arch Microbiol 168:225–236PubMedCrossRefGoogle Scholar
  7. 7.
    Wood AP, Kelly DP, McDonald IR, Jordan SL, Morgan TD, Khan S, Murrell JC, Borodina E (1998) A novel pink-pigmented methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen source. Arch Microbiol 169:148–158PubMedCrossRefGoogle Scholar
  8. 8.
    Cox RB, Quayle JR (1975) The autotrophic growth of Micrococcus denitrificans on methanol. Biochem J 150:569–571PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bamforth CW, Quayle JR (1978) Aerobic and anaerobic growth of Paracoccus denitrificans on methanol. Arch Microbiol 119:91–97PubMedCrossRefGoogle Scholar
  10. 10.
    Kelly DP, Wood AP (1982) Autotrophic growth of Thiobacillus A2 on methanol. FEMS Microbiol Lett 15:229–233CrossRefGoogle Scholar
  11. 11.
    Kelly DP, Wood AP (1984) Potential for methylotrophic autotrophy in Thiobacillus versutus (Thiobacillus sp. strain A2). In: Crawford RL, Hanson RS (eds) Microbial growth on C1 compounds. American Society for Microbiology, Washington, DC, pp 324–329Google Scholar
  12. 12.
    Dedysh SN, Smirnova KV, Khmelenina VN, Suzina NE, Liesack W, Trotsenko YA (2005) Methylotrophic autotrophy in Beijerinckia mobilis. J Bacteriol 187:3884–3888PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Loew O (1892) Ueber einen Bacillus, welcher Ameisensäure und Formaldehyd assimilieren kann. Centralbl Bakteriol 12:462–465Google Scholar
  14. 14.
    Holmes AJ, Kelly DP, Baker SC, Thompson AJ, De Marco P, Kenna EM, Murrell JC (1997) Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: novel methylotrophs able to grow on methanesulfonic acid. Arch Microbiol 167:46–53PubMedCrossRefGoogle Scholar
  15. 15.
    Dedysh SN, Panikov NS, Tiedje JM (1998) Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Environ Microbiol 64:922–929PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hanson RS (1998) Ecology of methylotrophic bacteria. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York and Oxford, pp 137–162Google Scholar
  17. 17.
    Anesti V, Vohra J, Goonetilleka S, McDonald IR, Sträubler B, Stackebrandt E, Kelly DP, Wood AP (2004) Molecular detection and isolation of methylotrophic bacteria, including Methylobacterium podarium sp. nov., from the human foot microflora. Environ Microbiol 6:820–830PubMedCrossRefGoogle Scholar
  18. 18.
    Anesti V, McDonald IR, Ramaswamy M, Wade WG, Kelly DP, Wood AP (2005) Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth. Environ Microbiol 7:1227–1238PubMedCrossRefGoogle Scholar
  19. 19.
    Wang P, Wang F, Xu M, Xiao X (2004) Molecular phylogeny of methylotrophs in a deep-sea sediment from a tropical west Pacific warm pool. FEMS Microbiol Ecol 47:77–84PubMedCrossRefGoogle Scholar
  20. 20.
    Moosvi SA, McDonald IR, Pearce D, Kelly DP, Wood AP (2005) Molecular detection and isolation from Antarctica of methylotrophic bacteria able to grow with methylated sulfur compounds. Syst Appl Microbiol 28:541–554PubMedCrossRefGoogle Scholar
  21. 21.
    Moosvi SA, Pacheco CC, McDonald IR, De Marco P, Pearce D, Kelly DP, Wood AP (2005) Isolation and properties of methanesulfonate-degrading Afipia felis from Antarctica and comparison with other strains of A. felis. Environ Microbiol 7:22–33PubMedCrossRefGoogle Scholar
  22. 22.
    Lacava PT, Parker J, Andreote FD, Dini-Andreote F, Ramirez JL, Miller TA (2007) Analysis of the bacterial community in glassy-winged sharpshooter heads. Entomol Res 37:262–266CrossRefGoogle Scholar
  23. 23.
    Schäfer H (2007) Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Appl Environ Microbiol 73:2580–2591PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Boden R, Thomas E, Savani P, Kelly DP, Wood AP (2008) Novel methylotrophic bacteria isolated from the River Thames (London, UK). Environ Microbiol 10:3225–3236PubMedCrossRefGoogle Scholar
  25. 25.
    Islam T, Jensen S, Reigsad LJ, Larsen Ø, Birkleand NK (2008) Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Nat Acad Sci US 105:300–304CrossRefGoogle Scholar
  26. 26.
    Wood AP, Kelly DP (2010) Oral microbiology: pathogens, methanogens, sulfate-reducing and methylotrophic bacteria in halitosis and periodontitis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin and Heidelberg, pp 3167–3178CrossRefGoogle Scholar
  27. 27.
    Wood AP, Kelly DP (2010) Skin microbiology, body odor, and methylotrophic bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin and Heidelberg, pp 3203–3213CrossRefGoogle Scholar
  28. 28.
    Wood AP, Warren FJ, Kelly DP (2010) Methylotrophic bacteria in trimethylaminuria and bacterial vaginosis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin and Heidelberg, pp 3227–3240CrossRefGoogle Scholar
  29. 29.
    Hung WL, Wade WG, Boden R, Kelly DP, Wood AP (2011) Facultative methylotrophs from the human oral cavity and methylotrophy in strains of Gordonia, Leifsonia, and Microbacterium. Arch Microbiol 193:407–417PubMedCrossRefGoogle Scholar
  30. 30.
    Hung W-L, Wade WW, Chen Y, Kelly DP, Wood AP (2012) Design and evaluation of novel primers for the detection of genes encoding diverse enzymes of methylotrophy and autotrophy. Polish J Microbiol 61:11–22Google Scholar
  31. 31.
    Lee C-H, Tang Y-F, Liu J-W (2004) Underdiagnosis of urinary tract infection caused by Methylobacterium species with current standard processing of urine culture and its clinical implications. J Med Microbiol 53:756–759CrossRefGoogle Scholar
  32. 32.
    Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedPubMedCentralGoogle Scholar
  33. 33.
    Urakami T, Yano I (1989) Methanol-utilizing Mycobacterium strains isolated from soil. J Gen Appl Microbiol 35:125–133CrossRefGoogle Scholar
  34. 34.
    Howieson JG, Ewing MA, D'Antuono MF (1988) Selection for acid tolerance in Rhizobium meliloti. Plant Soil 105:179–188CrossRefGoogle Scholar
  35. 35.
    Yates RJ, Howieson JG, Reeve WG, Nandasena KG, Law I, Bräu L, Ardley JK, Nistelberger HM, Real D, O’Hara GW (2007) Lotononis angolensis forms nitrogen fixing, lupinoid nodules with phylogenetically unique, fast-growing, pink-pigmented bacteria, which do not nodulate L. bainesii or L. listii. Soil Biol Biochem 39:1680–1688CrossRefGoogle Scholar
  36. 36.
    O'Hara GW, Goss TJ, Dilworth MJ, Glenn AR (1989) Maintenance of intracellular pH and acid-tolerance in Rhizobium meliloti. Appl Environ Microbiol 55:1870–1876PubMedPubMedCentralGoogle Scholar
  37. 37.
    Ogata K, Nishikawa H, Ohsugi M (1969) A yeast capable of utilizing methanol. Agric Biol Chem 33:1519–1520CrossRefGoogle Scholar
  38. 38.
    Limtong S, Srisuk N, Yorgmanitchal W, Kawasaki H, Yurimoto H, Nakase T, Kato N (2004) Three new thermotolerant methylotrophic yeasts, Candida krabiensis sp. nov., Candida sithepensis sp. nov., and Pichia siamensis sp. nov., isolated in Thailand. J Gen Appl Microbiol 50:119–127PubMedCrossRefGoogle Scholar
  39. 39.
    Yurimoto H, Oku M (2011) Sakai Y (2011) Yeast methylotrophy, metabolism, gene regulation and peroxisome homeostasis. Int J Microbiol. doi: 10.1155/2011/102298 (8 pp)PubMedPubMedCentralGoogle Scholar
  40. 40.
    Choi DB, Kim SI (2005) Production of heterologous proteins from Pichia pastoris by air-lift bioreactor. J Ind Eng Chem 11:381–386Google Scholar
  41. 41.
    Thompson AS, Owens NJP, Murrell JC (1995) Isolation and characterization of methanesulfonic acid-degrading bacteria from the marine environment. Appl Environ Microbiol 61:2388–2393PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kelly DP, Wood AP (1998) Microbes of the sulfur cycle. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York and Oxford, pp 31–57Google Scholar
  43. 43.
    Colby J, Zatman L (1975) Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation in obligate methylotrophs and restricted facultative methylotrophs. Biochem J 148:313–320Google Scholar
  44. 44.
    Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–437PubMedCrossRefGoogle Scholar
  45. 45.
    Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey N, Wood AP (2002) Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol 177:173–183PubMedCrossRefGoogle Scholar
  46. 46.
    Arfman N, Watling EM, Clement W, van Oosterwijk RJ, de Vries GE, Harder W, Atwood MM, Dijkhuizen J (1989) Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic methanol dehydrogenase as a key enzyme. Arch Microbiol 152:280–288PubMedCrossRefGoogle Scholar
  47. 47.
    Green PN (2006) Methylobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, vol 5, 3rd edn. Springer, New York, pp 257–265CrossRefGoogle Scholar
  48. 48.
    LPSN (2014) List of prokaryotic names with standing in nomenclature. http://www.bacterio.net/methylobacterium.html. Accessed 10 November 2014
  49. 49.
    Kelly DP, McDonald IR, Wood AP (2014) The family Methylobacteriaceae. In: Stackebrandt E, Rosenberg E, Delong E, Lory S, Thompson F (eds) The prokaryotes, 4th edn, vol 8, Alphaproteobacteria and Betaproteobacteria. Springer, New York and HeidelbergGoogle Scholar
  50. 50.
    Chistoserdova LV, Chen S-W, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185:2980–2987PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kelly DP, Wood AP (2006) The genus Paracoccus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 5, 3rd edn. Springer, New York, pp 232–249CrossRefGoogle Scholar
  52. 52.
    Kelly DP, Euzéby JP, Goodhew CF, Wood AP (2006) Redefining Paracoccus denitrificans and Paracoccus pantotrophus and the case for a reassessment of the strains held by international culture collections. Int J Syst Evol Microbiol 56:2495–2500PubMedCrossRefGoogle Scholar
  53. 53.
    Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, Chistoserdova L (2006) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56:2517–2522PubMedCrossRefGoogle Scholar
  54. 54.
    Kalyuzhnaya MG, Hristova KR, Lidstrom ME, Chistoserdova L (2008) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190:3817–3823PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    McDonald IR et al (2005) Aminobacter ciceronei sp. nov. and Aminobacter lissariensis sp. nov., isolated from various terrestrial environments. Int J Syst Evol Microbiol 55:1827–1832Google Scholar
  56. 56.
    Warner KL, Larkin MJ, Harper DB, Murrell JC, McDonald IR (2005) Analysis of genes involved in methyl halide degradation in Aminobacter lissarensis CC495. FEMS Microbiol Lett 251:45–51PubMedCrossRefGoogle Scholar
  57. 57.
    Baker SC, Kelly DP, Murrell JC (1991) Microbial degradation of methanesulphonic acid: a missing link in the biogeochemical sulphur cycle. Nat Lond 350:627–628CrossRefGoogle Scholar
  58. 58.
    Kelly DP, Murrell JC (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172:341–348PubMedCrossRefGoogle Scholar
  59. 59.
    Baxter NJ, Scanlan J, De Marco P, Wood AP, Murrell JC (2002) Duplicate copies of genes encoding methanesulfonate monooxygenase in Marinosulfonomonas methylotropha strain TR3 and detection of methanesulfonate utilizers in the environment. Appl Environ Microbiol 68:289–296PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    De Bont JAM, van Dijken JP, Harder W (1981) Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. J Gen Microbiol 127:315–323Google Scholar
  61. 61.
    Doronina NV, Trotsenko YA, Kolganova TV, Tourova TP, Salkinoja-Salonen MS (2004) Methylobacillus pratensis sp. nov., a novel non-pigmented, aerobic, obligately methylotrophic bacterium isolated from meadow grass. Int J Syst Evol Microbiol 54:1453–1457PubMedCrossRefGoogle Scholar
  62. 62.
    Padden AN, Kelly DP, Wood AP (1998) Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobacter tagetidis. Arch Microbiol 169:249–256PubMedCrossRefGoogle Scholar
  63. 63.
    Kelly DP, McDonald IR, Wood AP (2000) Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the α-subclass of the Proteobacteria. Int J Syst Evol Microbiol 50:1797–1802PubMedCrossRefGoogle Scholar
  64. 64.
    Neufeld JD, Schäfer H, Cox MJ, Boden R, McDonald IR, Murrell JC (2007) Stable isotope probing of the marine environment implicates Methylophaga in the consumption of methanol and methylamine. ISME J 1:480–491PubMedCrossRefGoogle Scholar
  65. 65.
    Boden R, Kelly DP, Murrell JC, Schäfer H (2010) Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle. Env Microbiol 12:2688–2699Google Scholar
  66. 66.
    Jewell T, Huston SL, Nelson DC (2008) Methylotrophy in freshwater Beggiatoa alba strains. Appl Environ Microbiol 74:5575–5578PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Alves AMCR, Euverink GJW, Santos H, Dijkhuizen L (2001) Different physiological roles of ATP- and PPi-dependent phosphofructokinase isoenzymes in the methylotrophic actinomycete Amycolatopsis methanolica. J Bacteriol 183:7231–7240PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Smith NA, Kelly DP (1988) Isolation and physiological characterization of autotrophic sulphur bacteria oxidizing dimethyl disulphide as sole source of energy. J Gen Microbiol 134:1407–1417Google Scholar
  69. 69.
    Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2005) Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol 71:6885–6899PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Neufeld JD, Boden R, Moussard H, Schäfer H, Murrell JC (2008) Substrate-specific clades of active marine methylotrophs associated with a phytoplankton bloom in a temperate coastal environment. Appl Environ Microbiol 74:7321–7328PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Visscher PT, Taylor BF (1994) Demethylation of dimethylsulfoniopropionate to 3-mercaptopropionate by an aerobic marine bacterium. Appl Environ Microbiol 60:4617–4619PubMedPubMedCentralGoogle Scholar
  72. 72.
    Corpe WA (1985) A method for detecting methylotrophic bacteria on solid surfaces. J Microbiol Methods 3:215–221CrossRefGoogle Scholar
  73. 73.
    Corpe WA, Rheem S (1989) Ecology of methylotrophic bacteria on living leaf surfaces. FEMS Micobiol Ecol 62:243–250CrossRefGoogle Scholar
  74. 74.
    Mizuno M, Yurimoto H, Yoshida N, Iguchi H, Sakai Y (2012) Distribution of pink pigmented facultative methylotrophs on leaves of vegetables. Biosci Biotechnol Biochem 76:578–580PubMedCrossRefGoogle Scholar
  75. 75.
    Knief C, Ramette A, Franco L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728PubMedCrossRefGoogle Scholar
  76. 76.
    Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Bolvin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Jourand P, Renier A, Rapior S, Mania de Faria S, Prin Y, Gallana A, Giraud E, Dreyfus B (2005) Role of methylotrophy during symbiosis between Methylobacterium nodulans and Crotalaria podocarpa. Mol Plant Microbe Interact 18:1061–1068PubMedCrossRefGoogle Scholar
  78. 78.
    Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273PubMedCrossRefGoogle Scholar
  79. 79.
    Norris DO (1958) A red strain of Rhizobium from Lotononis bainesii Baker. Aust J Agr Res 9:629–632CrossRefGoogle Scholar
  80. 80.
    Boatwright JS, Wink M, van Wyk B-E (2011) The generic concept of Lotononis (Crotalarieae, Fabaceae): reinstatement of the genera Euchlora, Leobordea and Listia and the new genus Ezoloba. Taxon 60:161–177Google Scholar
  81. 81.
    Jaftha JB, Strijdom BW, Steyn PL (2002) Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Syst Appl Microbiol 25:440–449PubMedCrossRefGoogle Scholar
  82. 82.
    Ardley JK, Reeve WG, O'Hara GW, Yates RJ, Dilworth MJ, Howieson JG (2013) Nodule morphology, symbiotic specificity and association with unusual rhizobia are distinguishing features of the genus Listia within the southern African crotalarioid clade Lotononis s. l. Ann Bot 112:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ardley JK, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Tiwari RP, Howieson JG (2009) Root nodule bacteria isolated from South African Lotononis bainesii, L. listii and L. solitudinis are species of Methylobacterium that are unable to utilize methanol. Arch Microbiol 191:311–318PubMedCrossRefGoogle Scholar
  84. 84.
    Lindström K, Murwira M, Willems A, Altier N (2010) The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res Microbiol 161:453–463PubMedCrossRefGoogle Scholar
  85. 85.
    Moulin L, Béna G, Boivin-Masson C, Stepkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogen Evol 30:720–732CrossRefGoogle Scholar
  86. 86.
    Phalane F, Steenkamp ET, Law IJ, Botha WJ (2008) The diversity of root nodule bacteria associated with Lebeckia species in South Africa. In: Dakora FD, Chimphango SBM, Valentine AJ, Elmerich C, Newton WE (eds) Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture. Springer, The Netherlands, p 119CrossRefGoogle Scholar
  87. 87.
    Howieson JG, De Meyer SE, Vivas-Marfisi A, Ratnayake S, Ardley JK, Yates RJ (2013) Novel Burkholderia bacteria isolated from Lebeckia ambigua – a perennial suffrutescent legume of the fynbos. Soil Biol Biochem 60:55–64CrossRefGoogle Scholar
  88. 88.
    Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Ann Rev Gen 45:119–144CrossRefGoogle Scholar
  89. 89.
    Marx CJ et al (2012) Complete genome sequences of six strains of the genus Methylobacterium. J Bacteriol 194:4746–4748Google Scholar
  90. 90.
    Ardley JK et al (2014) Genome sequence of the dark pink pigmented Listia bainesii microsymbiont Methylobacterium sp. WSM2598. Standards Genomic Sci 2(3): in pressGoogle Scholar
  91. 91.
    D’Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiol 12:79R–105RCrossRefGoogle Scholar
  92. 92.
    Renier A, Jourand P, Rapior S, Poinsot V, Sy A, Dreyfus B, Moulin L (2008) Symbiotic properties of Methylobacterium nodulans ORS 2060T: a classic process for an atypical symbiont. Soil Biol Biochem 40:1404–1412CrossRefGoogle Scholar
  93. 93.
    Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. Blackwell, OxfordGoogle Scholar
  94. 94.
    Somasegaran P, Hoben HJ (1985) Methods in legume-rhizobium technology. University of Hawaii NifTAL Project and MIRCEN, Department of Agronomy and Soil Science, Hawaii Institute of Tropical Agriculture and Human Resources, College of Tropical Agriculture and Human Resources, Paia, MauiGoogle Scholar
  95. 95.
    Howieson JG et al (2015). Working with rhizobia. Australian Centre for International Agricultural Research, CanberraGoogle Scholar
  96. 96.
    Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198PubMedGoogle Scholar
  97. 97.
    Green PN (1992) The genus Methylobacterium. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer-Verlag, New York, pp 2342–2349Google Scholar
  98. 98.
    Deng ZS, Zhao LF, Korg ZY, Yang WQ, Lindstrom K, Wang ET, Wei GH (2011) Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 76:463–475PubMedCrossRefGoogle Scholar
  99. 99.
    Bullard GK, Roughley RJ, Pulsford DJ (2005) The legume inoculant industry and inoculant quality control in Australia: 1953–2003. Aust J Exp Agr 45:127–140CrossRefGoogle Scholar
  100. 100.
    Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Meth Mol Cell Biol 5:25–40Google Scholar
  101. 101.
    Kato N, Miyamoto N, Shimao M, Sakazawa C (1988) 3-Hexulose phosphate synthase from a new facultative methylotroph, Mycobacterium gastri MB19. Agric Biol Chem 52:2659–2661Google Scholar
  102. 102.
    Yasueda H, Kawahara Y, Sugimoto S-I (1999) Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 181:7154–7160PubMedPubMedCentralGoogle Scholar
  103. 103.
    Yurimoto H, Hirai R, Yasueda H, Mitsui R, Sakai Y, Kato N (2002) The ribulose monophosphate pathway operon encoding formaldehyde fixation in a thermotolerant methylotroph, Bacillus brevis S1. FEMS Microbiol Lett 214:189–193PubMedCrossRefGoogle Scholar
  104. 104.
    Levering PR, Van Dijken JP, Veenhuis M, Harder W (1981) Arthrobacter P1, a fast growing versatile methylotroph with amine oxidase as a key enzyme in the metabolism of methylated amines. Arch Microbiol 129:72–80PubMedCrossRefGoogle Scholar
  105. 105.
    Hazeu W, De Bruyn JC, Van Dijken JP (1983) Nocardia sp. 239, a facultative methanol-utilizer with the ribulose monophosphate pathway of formaldehyde fixation. Arch Microbiol 135:205–210CrossRefGoogle Scholar
  106. 106.
    Reed WN, Dugan PR (1987) Isolation and characterization of the facultative methylotroph Mycobacterium ID-Y. J Gen Microbiol 113:1389–1396Google Scholar
  107. 107.
    de Boer L, Harder W, Dijkhuizen L (1988) Phenylalanine and tyrosine metabolism in the facultative methylotroph Nocardia sp. 239. Arch Microbiol 149:459–465CrossRefGoogle Scholar
  108. 108.
    Dijkhuizen L, Arfman N, Attwood MM, Brooke AG, Harder W, Watling EM (1988) Isolation and initial characterization of thermotolerant methylotrophic Bacillus strains. FEMS Microbiol Lett 52:209–214CrossRefGoogle Scholar
  109. 109.
    Al-Awardhi N, Egli T, Hamer G, Wehrli E (1989) Thermotolerant and thermophilic solvent-utilizing methylotrophic, aerobic bacteria. Syst Appl Microbiol 11:207–216CrossRefGoogle Scholar
  110. 110.
    Bastide A, Laget M, Patte JC, Duménil G (1989) Methanol metabolism in Corynebacterium sp. XG, a facultatively methylotrophic strain. J Gen Microbiol 135:2869–2874Google Scholar
  111. 111.
    Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM (2010) Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 60:2490–2495PubMedCrossRefGoogle Scholar
  112. 112.
    Arfman N, Dijkhuizen L, Kirchhof G, Ludwig W, Schleifer KH, Bulygina ES, Chumakov KM, Govorukhina NI, Trotsenko YA, White D, Sharp RJ (1992) Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria. Int J Syst Bacteriol 42:439–445PubMedCrossRefGoogle Scholar
  113. 113.
    Brautaset T, Jakobsen OM, Flickinger MC, Valla S, Ellingsen TE (2004) Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. J Bacteriol 186:1229–1238PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Schendel FJ, Bremmon CE, Flickinger MC, Guettler M, Hanson RS (1990) L-lysine production at 50°C by mutants of a newly-isolated and characterized methylotrophic Bacillus sp. Appl Environ Microbiol 56:963–970PubMedPubMedCentralGoogle Scholar
  115. 115.
    Brautaset T, Jakobsen OM, Josefsen KD, Flickinger MC, Ellingsen TE (2007) Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50°C. Appl Environ Microbiol 74:22–34Google Scholar
  116. 116.
    Nazina TN (1981) A facultatively anaerobic methylotrophic bacterium, Brevibacterium rufescens comb. nov., from oil reservoirs. Microbiology (Moscow) 50:221–226Google Scholar
  117. 117.
    Nesvera J, Pátek M, Hochmannová E, Chibisova E, Serebrijski I, Tsygankov Y, Netrusov A (1991) Transformation of a new gram-positive methylotroph, Brevibacterium methylicum, by plasmid DNA. Appl Microbiol Biotechnol 35:777–780CrossRefGoogle Scholar
  118. 118.
    Çelik E, Çalik P, Oliver SG (2009) Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast 26:473–484PubMedCrossRefGoogle Scholar
  119. 119.
    Sreekrishna K, Brankamp RG, Kropp KE (1997) Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene 190:55–62PubMedCrossRefGoogle Scholar
  120. 120.
    Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, van Zyl WH (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microbial Cell Factories 4:31. doi:10.1186/1475-2859-4-31
  121. 121.
    Sreekrishna K et al (1998) Production of Bacillus entomotoxins in methylotrophic yeast. US patent number US5,827,684 AGoogle Scholar
  122. 122.
    Hacking AJ (1986) Economic aspects of biotechnology. Cambridge University Press, Cambridge, pp 93–126Google Scholar
  123. 123.
    Karagouni AD, Kelly DP (1989) Carbon dioxide fixation by Thiobacillus versutus: apparent absence of a CO2-concentrating mechanism in organisms grown under carbon-limitation in the chemostat. FEMS Microbiol Lett 58:179–182CrossRefGoogle Scholar
  124. 124.
    MacLennan DG, Ousby JC, Vasey RB, Cotton NT (1971) The influence of dissolved oxygen on Pseudomonas AM1 grown on methanol in continuous culture. J Gen Microbiol 69:395–404PubMedCrossRefGoogle Scholar
  125. 125.
    Wood AP, Kelly DP (1983) Autotrophic, mixotrophic and heterotrophic growth with denitrification by Thiobacillus A2 under anaerobic conditions. FEMS Microbiol Lett 16:363–370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Donovan P. Kelly
    • 1
  • Julie K. Ardley
    • 2
  • Ann P. Wood
    • 3
  1. 1.School of Life Sciences, University of WarwickCoventryUK
  2. 2.Centre for Rhizobium Studies, School of Veterinary and Life SciencesMurdoch UniversityMurdochAustralia
  3. 3.Department of Biochemistry, Henriette Raphael HouseKing’s College LondonLondonUK

Personalised recommendations