Advertisement

Protocols for Subtidal and Deep-Sea Benthic Oil Spill Simulations

  • Philippe Cuny
  • Vincent Grossi
  • Cécile Militon
  • Christian Tamburini
  • Georges Stora
  • Franck Gilbert
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

In addition to weathering, physical interactions between oil and suspended particulate matter play a role in the dispersal and sedimentation of spilled oil in marine ecosystems. In coastal regions characterized by high concentrations of suspended particulate material, up to 30% of the total spill may reach the seafloor where the oil can interact with biological and chemical sedimentary processes. Simulating and understanding the effects and dynamics of spilled oil in subtidal and deeper sediments represents a challenge in microbial ecology and biogeochemistry. However, setting up and monitoring experimental devices in areas permanently covered with seawater is indeed more complicated than in intertidal areas because the access is limited and requires adapted equipment. Here, we describe simple but efficient protocols for subtidal benthic oil spill simulation based on the use of plastic corers, as well as the characteristics of a benthic device enabling the in situ incubation of oiled deep-sea sediments. Associated logistic efforts and requirements are also presented.

Keywords:

Benthic incubation device Biodegradation Bioturbation Oil dynamics Plastic corers 

References

  1. 1.
    Sun J, Zhao D, Zhao C et al (2013) Investigation of the kinetics of oil–suspended particulate matter aggregation. Mar Pollut Bull 76:250–257. doi: 10.1016/j.marpolbul.2013.08.030 CrossRefPubMedGoogle Scholar
  2. 2.
    Payne JR, Clayton JR, Kirstein BE (2003) Oil/suspended particulate material interactions and sedimentation. Spill Sci Technol Bull 8:201–221. doi: 10.1016/S1353-2561(03)00048-3 CrossRefGoogle Scholar
  3. 3.
    Cuny P, Cravo-Laureau C, Grossi V et al (2011) Biodegradation of hydrocarbons in bioturbated marine sediments. In: Koukkou AI (ed) Microbial bioremediation of non-metals: current research. Caister Academic Press, PooleGoogle Scholar
  4. 4.
    McNutt MK, Camilli R, Crone TJ et al (2011) Review of flow rate estimates of the deepwater horizon oil spill. Proc Natl Acad Sci U S A 109(50):20260–20267. doi: 10.1073/pnas.1112139108 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Montagna PA, Baguley JG, Cooksey C et al (2013) Deep-sea benthic footprint of the deepwater horizon blowout. PLoS One 8(8):e70540. doi: 10.1371/journal.pone.0070540 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tamburini C, Boutrif M, Garel M et al (2013) Prokaryotic responses to hydrostatic pressure in the ocean – a review. Environ Microbiol 15:1262–1274. doi: 10.1111/1462-2920.12084 CrossRefPubMedGoogle Scholar
  7. 7.
    Gilbert F, Stora G, Bertrand JC (1996) In situ bioturbation and hydrocarbon fate in an experimental contaminated Mediterranean coastal ecosystem. Chemosphere 33:1449–1458. doi: 10.1016/0045-6535(96)00283-4 CrossRefGoogle Scholar
  8. 8.
    Grossi V, Massias D, Stora G et al (2002) Burial, exportation and degradation of acyclic petroleum hydrocarbons following a simulated oil spill in bioturbated Mediterranean coastal sediments. Chemosphere 48:947–954. doi: 10.1016/S0045-6535(02)00122-4 CrossRefPubMedGoogle Scholar
  9. 9.
    Miralles G, Nerini D, Mante C et al (2007) Effects of spilled oil on bacterial communities of Mediterranean coastal anoxic sediments chronically subjected to oil hydrocarbon contamination. Microbial Ecol 54(4):646–661. doi: 10.1007/s00248-007-9221-6 CrossRefGoogle Scholar
  10. 10.
    Desbruyères D, Deming JW, Dinet A et al (1985) Réactions de l’écosystème benthique benthique profond aux perturbations : nouveaux résultats expérimentaux. In: Laubier L, Monniet C (eds) Peuplements profonds du Golfe de Gascogne. Ifremer, BrestGoogle Scholar
  11. 11.
    Ageron M, Aguilar JA, Al Samarai I et al (2011) ANTARES: the first undersea neutrino telescope. Nucl Instum Method A 656:11–38. doi: 10.1016/j.nima.2011.06.103 CrossRefGoogle Scholar
  12. 12.
    Kristensen E, Hjorth JR, Aller RC (1991) Direct measurement of dissolved inorganic nitrogen exchange and denitrification in individual polychaete (Nereis virens) burrows. J Mar Res 49:355–377. doi: 10.1357/002224091784995855 CrossRefGoogle Scholar
  13. 13.
    Gerino M (1990) The effects of bioturbation on particle redistribution in Mediterranean coastal sediment. Preliminary results. Hydrobiologia 207:251–258. doi: 10.1007/BF00041463 CrossRefGoogle Scholar
  14. 14.
    Gerino M, Aller RC, Lee C et al (1998) Comparison of different tracers and methods used to quantify bioturbation during a spring bloom: 234-Thorium, luminophores and chlorophyll a. Estuar Coast Shelf Sci 46:531–547. doi: 10.1006/ecss.1997.0298 CrossRefGoogle Scholar
  15. 15.
    Wang Z, Stout S (2007) Oil spill environmental forensics: fingerprinting and source identification. Academic, San DiegoGoogle Scholar
  16. 16.
    Vieth A, Wilkes H (2010) Stable isotopes in understanding origin and degradation processes of petroleum. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Philippe Cuny
    • 1
  • Vincent Grossi
    • 2
  • Cécile Militon
    • 1
  • Christian Tamburini
    • 1
  • Georges Stora
    • 1
  • Franck Gilbert
    • 3
    • 4
  1. 1.Aix-Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110Marseille cedex 9France
  2. 2.Laboratoire de Geologie de LyonUniversite Lyon 1, CNRS UMR5276VilleurbanneFrance
  3. 3.EcoLab (Laboratoire écologie fonctionnelle et environnement)Université de Toulouse; INP, UPSToulouseFrance
  4. 4.CNRS, EcoLabToulouseFrance

Personalised recommendations