Skip to main content

Use of Bacterial Polyhydroxyalkanoates in Protein Display Technologies

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Protein display and immobilization are powerful tools used in industrial biocatalysts, bioremediation, biomolecule screening and purification, as well as biosensor applications. Immobilization can aid in the stability and function of a protein and can allow its recovery and potential reuse. Traditional protein immobilization techniques involving entrapment or non-covalent interactions between the protein and support materials are susceptible to leaching and often require additional cross-linking steps; which may be costly, potentially toxic and may negatively affect the function of the protein. All of these approaches require multiple steps to produce, isolate, and immobilize the protein of interest. Here we present protocols for the in vivo production of a protein of interest covalently immobilized on the surface of a bio-polyester resin in a single step. The steps involved in vector construction, protein/bead production, and isolation are explained and outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cretich M, Damin F, Pirri G, Chiari M (2006) Protein and peptide arrays: recent trends and new directions. Biomol Eng 23:77–88. doi:10.1016/j.bioeng.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  2. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463. doi:10.1016/j.enzmictec.2007.01.018

    Article  CAS  Google Scholar 

  3. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synt Catal 349:1289–1307. doi:10.1002/adsc.200700082

    Article  CAS  Google Scholar 

  4. Brena B, Gonzalez-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. Methods Mol Biol 1051:15–31. doi:10.1007/978-1-62703-550-7_2

    Article  CAS  PubMed  Google Scholar 

  5. Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors (Basel) 13:4811–4840. doi:10.3390/s130404811

    Article  CAS  Google Scholar 

  6. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468. doi:10.1039/b711564b

    Article  CAS  PubMed  Google Scholar 

  7. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235. doi:10.1039/c3cs60075k

    Article  CAS  PubMed  Google Scholar 

  8. Secundo F (2013) Conformational changes of enzymes upon immobilisation. Chem Soc Rev 42:6250–6261. doi:10.1039/c3cs35495d

    Article  CAS  PubMed  Google Scholar 

  9. Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BH (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10:660–669. doi:10.1021/bm801394s

    Article  CAS  PubMed  Google Scholar 

  10. Draper JL, Rehm BH (2012) Engineering bacteria to manufacture functionalized polyester beads. Bioengineered 3:203–208. doi:10.4161/bioe.19567

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rehm BH (2006) Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: the key role of polyester synthases. Biotechnol Lett 28:207–213. doi:10.1007/s10529-005-5521-4

    Article  CAS  PubMed  Google Scholar 

  12. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592. doi:10.1038/nrmicro2354

    Article  CAS  PubMed  Google Scholar 

  13. Hooks DO, Venning-Slater M, Du J, Rehm BH (2014) Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation. Molecules 19:8629–8643. doi:10.3390/molecules19068629

    Article  PubMed  Google Scholar 

  14. Brockelbank JA, Peters V, Rehm BH (2006) Recombinant Escherichia coli strain produces a ZZ domain displaying biopolyester granules suitable for immunoglobulin G purification. Appl Environ Microbiol 72:7394–7397. doi:10.1128/AEM. 01014-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Backstrom BT, Brockelbank JA, Rehm BH (2007) Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein. BMC Biotechnol 7:3. doi:10.1186/1472-6750-7-3

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grage K, Rehm BH (2008) In vivo production of scFv-displaying biopolymer beads using a self-assembly-promoting fusion partner. Bioconjug Chem 19:254–262. doi:10.1021/bc7003473

    Article  CAS  PubMed  Google Scholar 

  17. Jahns AC, Haverkamp RG, Rehm BH (2008) Multifunctional inorganic-binding beads self-assembled inside engineered bacteria. Bioconjug Chem 19:2072–2080. doi:10.1021/bc8001979

    Article  CAS  PubMed  Google Scholar 

  18. Peters V, Rehm BH (2008) Protein engineering of streptavidin for in vivo assembly of streptavidin beads. J Biotechnol 134:266–274. doi:10.1016/j.jbiotec.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  19. Atwood JA, Rehm BH (2009) Protein engineering towards biotechnological production of bifunctional polyester beads. Biotechnol Lett 31:131–137. doi:10.1007/s10529-008-9836-9

    Article  CAS  PubMed  Google Scholar 

  20. Jahns AC, Rehm BH (2009) Tolerance of the Ralstonia eutropha class I polyhydroxyalkanoate synthase for translational fusions to its C terminus reveals a new mode of functional display. Appl Environ Microbiol 75:5461–5466. doi:10.1128/AEM. 01072-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rasiah IA, Rehm BH (2009) One-step production of immobilized alpha-amylase in recombinant Escherichia coli. Appl Environ Microbiol 75:2012–2016. doi:10.1128/AEM.02782-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grage K, Peters V, Rehm BH (2011) Recombinant protein production by in vivo polymer inclusion display. Appl Environ Microbiol 77:6706–6709. doi:10.1128/AEM. 05953-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parlane NA, Grage K, Lee JW, Buddle BM, Denis M, Rehm BH (2011) Production of a particulate hepatitis C vaccine candidate by an engineered Lactococcus lactis strain. Appl Environ Microbiol 77:8516–8522. doi:10.1128/AEM. 06420-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blatchford PA, Scott C, French N, Rehm BH (2012) Immobilization of organophosphohydrolase OpdA from Agrobacterium radiobacter by overproduction at the surface of polyester inclusions inside engineered Escherichia coli. Biotechnol Bioeng 109:1101–1108. doi:10.1002/bit.24402

    Article  CAS  PubMed  Google Scholar 

  25. Parlane NA, Grage K, Mifune J, Basaraba RJ, Wedlock DN, Rehm BH, Buddle BM (2012) Vaccines displaying mycobacterial proteins on biopolyester beads stimulate cellular immunity and induce protection against tuberculosis. Clin Vaccine Immunol 19:37–44. doi:10.1128/CVI. 05505-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hooks DO, Blatchford PA, Rehm BH (2013) Bioengineering of bacterial polymer inclusions catalyzing the synthesis of N-acetylneuraminic acid. Appl Environ Microbiol 79:3116–3121. doi:10.1128/AEM.03947-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robins KJ, Hooks DO, Rehm BH, Ackerley DF (2013) Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. PLoS One 8:e59200. doi:10.1371/journal.pone.0059200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen S, Parlane NA, Lee J, Wedlock DN, Buddle BM, Rehm BH (2014) New skin test for detection of bovine tuberculosis on the basis of antigen-displaying polyester inclusions produced by recombinant Escherichia coli. Appl Environ Microbiol 80:2526–2535. doi:10.1128/AEM. 04168-13

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578. doi:10.1016/j.biomaterials.2005.04.036

    Article  CAS  PubMed  Google Scholar 

  30. Rehm BH (2007) Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles. Curr Issues Mol Biol 9:41–62

    CAS  PubMed  Google Scholar 

  31. Mifune J, Grage K, Rehm BH (2009) Production of functionalized biopolyester granules by recombinant Lactococcus lactis. Appl Environ Microbiol 75:4668–4675. doi:10.1128/AEM.00487-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Amara AA, Rehm BH (2003) Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochem J 374:413–421. doi:10.1042/BJ20030431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hay ID, Du J, Chen S, Burr N, Rehm BH (2015) Bioengineering bacteria to assemble custom-made polyester affinity resins. Appl Environ Microbiol. doi:10.1128/AEM.02595-14

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd H. A. Rehm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Hay, I.D., Hooks, D.O., Rehm, B.H.A. (2014). Use of Bacterial Polyhydroxyalkanoates in Protein Display Technologies. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2014_34

Download citation

  • DOI: https://doi.org/10.1007/8623_2014_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53113-6

  • Online ISBN: 978-3-662-53115-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics