A Practical Protocol for Genome-Scale Metabolic Reconstructions

  • Juan Nogales
Part of the Springer Protocols Handbooks book series (SPH)


Genome-scale metabolic reconstructions (GEMREs) are organism-specific knowledge bases. Such reconstructions are developed systematically through the integration of genome annotation, omic data sets, and biological knowledge available for the target species at the time of reconstruction. They can be further transformed into computational models enabling the quantitative prediction of phenotypic states in terms of fluxes through individual reactions. In addition, they can be used as unique computational scaffolds towards the integration and mechanistic contextualization of omic data. As a result, GEMREs are attracting great interest, and the scope of their applications keeps growing. However, the key reconstruction process is time-consuming, and it is extremely sensitive to the adherence to accepted quality standards and protocols. Therefore, high-quality reconstruction protocols reducing the time and effort involved in the reconstruction are desirable. This chapter provides a step-by-step protocol for genome-scale metabolic reconstruction accessible to nonexperts in the field. The protocol was applied to reconstruct the metabolic network of the aromatic hydrocarbon-degrading bacterium Pseudomonas putida F1 using the reconstruction of the related strain Pseudomonas putida KT2440 as template. The final model was further used to compare, from a mechanistic point of view, some of the metabolic capabilities of these two interesting environmental bacteria.


Constraint-Based Reconstruction and Analysis Flux Balance Analysis Genome-scale model Pseudomonas Metabolic Reconstruction 



This work was supported by the SYNPOL (FP7-KBBE 311815; UE project.


  1. 1.
    Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Feist A, Herrgard M, Thiele I, Reed J, Palsson B (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143CrossRefPubMedGoogle Scholar
  3. 3.
    Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hyduke D, Schellenberger J, Que R, Fleming R, Thiele I, Orth J, Feist A, Zielinski D, Bordbar A, Lewis N et al (2011) COBRA Toolbox 2.0Google Scholar
  5. 5.
    Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305PubMedPubMedCentralGoogle Scholar
  6. 6.
    Österlund T, Nookaew I, Nielsen J (2012) Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv 30(5):979–988CrossRefPubMedGoogle Scholar
  7. 7.
    Bordbar A, Palsson BO (2012) Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J Intern Med 271(2):131–141CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23(4):617–623CrossRefPubMedGoogle Scholar
  9. 9.
    McCloskey D, Palsson BO, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9:661CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28(9):977–982CrossRefPubMedGoogle Scholar
  11. 11.
    Vitkin E, Shlomi T (2012) MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biol 13(11):R111CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J (2013) The RAVEN Toolbox and its Use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3):e1002980CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liao Y-C, Tsai M-H, Chen F-C, Hsiung CA (2012) GEMSiRV: a software platform for GEnome-scale metabolic model simulation, reconstruction and visualization. Bioinformatics 28(13):1752–1758CrossRefPubMedGoogle Scholar
  14. 14.
    Monk J, Nogales J, Palsson BO (2014) Optimizing genome-scale network reconstructions. Nat Biotechnol 32(5):447–452CrossRefPubMedGoogle Scholar
  15. 15.
    Haggart CR, Bartell JA, Saucerman JJ, Papin JA (2011) Chapter twenty-one - whole-genome metabolic network reconstruction and constraint-based modeling. In: Daniel Jameson MV, Hans VW (eds) Methods in enzymology, vol 500. Academic, San Diego, pp 411–433Google Scholar
  16. 16.
    Santos F, Boele J, Teusink B (2011) Chapter twenty-four - a practical guide to genome-scale metabolic models and their analysis. In: Daniel Jameson MV, Hans VW (eds) Methods in enzymology, vol 500. Academic, San Diego, pp 509–532Google Scholar
  17. 17.
    Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat Protoc 2(3):727–738CrossRefPubMedGoogle Scholar
  18. 18.
    Nogales J, Palsson B, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2(1):79CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schellenberger J, Park J, Conrad T, Palsson B (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11(1):213CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Eaton RW (1997) p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 179(10):3171–3180PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zylstra GJ, Gibson DT (1989) Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 264(25):14940–14946PubMedGoogle Scholar
  23. 23.
    Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35(2):299–323CrossRefPubMedGoogle Scholar
  24. 24.
    Jiménez JI, Nogales J, García JL, Díaz E (2010) A genomic view of the catabolism of aromatic compounds in Pseudomonas. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1297–1325CrossRefGoogle Scholar
  25. 25.
    Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13(3):344–349CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rühl J, Hein E-M, Hayen H, Schmid A, Blank LM (2012) The glycerophospholipid inventory of Pseudomonas putida is conserved between strains and enables growth condition-related alterations. J Microbial Biotechnol 5(1):45–58CrossRefGoogle Scholar
  27. 27.
    Ebert BE, Kurth F, Grund M, Blank LM, Schmid A (2011) Response of Pseudomonas putida KT2440 to Increased NADH and ATP Demand. Appl Environ Microbiol 77(18):6597–6605CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    del Castillo T, Ramos JL, Rodríguez-Herva JJ, Fuhrer T, Sauer U, Duque E (2007) Convergent Peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189(14):5142–5152CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Reed J, Vo T, Schilling C, Palsson B (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Environmental BiologyCentro de Investigaciones Biológicas-CSICMadridSpain

Personalised recommendations