Skip to main content

How to Perceive Object Permanence in Our Visual Environment: The Multiple Object Tracking Paradigm

  • Protocol
  • First Online:
Spatial Learning and Attention Guidance

Part of the book series: Neuromethods ((NM,volume 151))

Abstract

The ability to simultaneously maintain multiple representations through motion is an essential feature of the visual system. The multiple object tracking paradigm (MOT) has been devised in order to develop an understanding of how the visual system retains the correspondence between visual objects and their neural representation across time. A multitude of potential mechanisms maintaining this correspondence have been proposed, each being either supported or challenged by several studies. In order to provide a background for developing MOT paradigms focusing on current MOT literature, we will discuss design strategies for creating object tracking environments and present methods to quantify tracking performance under different task conditions. Finally, methods to measure resource deployment for spatial locations during tracking will be presented that will allow for inferences about potential underlying tracking mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolfe JM (1994) Guided Search 2.0 A revised model of visual search. Psychon Bull Rev 1(2):202–238. https://doi.org/10.3758/BF03200774

    Article  CAS  PubMed  Google Scholar 

  2. Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136

    CAS  PubMed  Google Scholar 

  3. Treisman AM (1996) The binding problem. Curr Opin Neurobiol 6(2):171–178

    CAS  Google Scholar 

  4. Driver J, Davis G, Russell C et al (2001) Segmentation, attention and phenomenal visual objects. Cognition 80(1-2):61–95

    CAS  PubMed  Google Scholar 

  5. Jonides J, Smith EE, Koeppe RA et al (1993) Spatial working memory in humans as revealed by PET. Nature 363(6430):623–625

    CAS  PubMed  Google Scholar 

  6. Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390:279–281

    CAS  PubMed  Google Scholar 

  7. Pylyshyn Z, Storm RW (1988) Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat Vis 3:1–19

    Google Scholar 

  8. Muller MM, Malinowski P, Gruber T et al (2003) Sustained division of the attentional spotlight. Nature 424(6946):309–312. https://doi.org/10.1038/nature01812

    Article  CAS  PubMed  Google Scholar 

  9. McMains SA, Somers DC (2004) Multiple spotlights of attentional selection in human visual cortex. Neuron 42(4):677–686

    CAS  PubMed  Google Scholar 

  10. Cave KR, Bichot NP (1999) Visuo-spatial attention: beyond a spotlight model. Psychon Bull Rev 6:204–223

    CAS  PubMed  Google Scholar 

  11. Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25

    CAS  PubMed  Google Scholar 

  12. Eriksen CW, James JDS (1986) Visual attention within and around the field of focal attention: a zoom lens model. Percept Psychophys 40(4):225–240

    CAS  PubMed  Google Scholar 

  13. Schoenfeld MA, Hopf JM, Merkel C et al (2014) Object-based attention involves the sequential activation of feature-specific cortical modules. Nat Neurosci 17(4):619–624. https://doi.org/10.1038/nn.3656

    Article  CAS  PubMed  Google Scholar 

  14. Huang L, Treisman A, Pashler H (2007) Characterizing the limits of human visual awareness. Science 317(5839):823–825

    CAS  PubMed  Google Scholar 

  15. VanRullen R (2013) Visual attention: a rhythmic process? Curr Biol 23(24):R1110–R1112. https://doi.org/10.1016/j.cub.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  16. Scholl BJ (2001) Objects and attention: the state of the art. Cognition 80(1–2):1–46

    CAS  PubMed  Google Scholar 

  17. Pylyshyn Z (1989) The role of location indexes in spatial perception: a sketch of the FINST spatial-index model. Cognition 32:65–97

    CAS  PubMed  Google Scholar 

  18. Posner MI, Walker JA, Friedrich FA et al (1987) How do the parietal lobes direct covert attention? Neuropsychologia 25(1A):135–145

    CAS  PubMed  Google Scholar 

  19. Eriksen CW, Murphy TD (1987) Movement of attentional focus across the visual field: a critical look at the evidence. Percept Psychophys 42(3):299–305

    CAS  PubMed  Google Scholar 

  20. Oksama L, Hyona J (2004) Is multiple object tracking carried out automatically by an early vision mechanism independent of higher-order cognition? An individual difference approach. Vis Cogn 11(5):631–671

    Google Scholar 

  21. Yantis S (1992) Multielement visual tracking: attention and perceptual organization. Cogn Psychol 24(3):295–340

    CAS  PubMed  Google Scholar 

  22. Carlson TA, Hogendoorn H, Verstraten FA (2006) The speed of visual attention: what time is it? J Vis 6(12):1406–1411. https://doi.org/10.1167/6.12.6

    Article  PubMed  Google Scholar 

  23. Horowitz TS, Holcombe AO, Wolfe JM et al (2004) Attentional pursuit is faster than attentional saccade. J Vis 4(7):585–603. https://doi.org/10.1167/4.7.6

    Article  PubMed  Google Scholar 

  24. Hogendoorn H, Carlson TA, Verstraten FA (2007) The time course of attentive tracking. J Vis 7(14):2.1–2.10. https://doi.org/10.1167/7.14.2

    Article  Google Scholar 

  25. Holcombe AO, Chen WY (2013) Splitting attention reduces temporal resolution from 7 Hz for tracking one object to <3 Hz when tracking three. J Vis 13(1):12. https://doi.org/10.1167/13.1.12

    Article  PubMed  Google Scholar 

  26. Pylyshyn Z (2001) Visual indexes, preconceptual objects, and situated vision. Cognition 80:127–158

    CAS  PubMed  Google Scholar 

  27. Sears CR, Pylyshyn ZW (2000) Multiple object tracking and attentional processing. Can J Exp Psychol 54(1):1–14

    CAS  PubMed  Google Scholar 

  28. Cowan N (2001) The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci 24(1):87–114. discussion 114-185

    CAS  PubMed  Google Scholar 

  29. Kahneman D, Treisman A, Gibbs BJ (1992) The reviewing of object files: object-specific integration of information. Cogn Psychol 24(2):175–219

    CAS  PubMed  Google Scholar 

  30. Scholl BJ, Pylyshyn ZW, Feldman J (2001) What is a visual object? Evidence from target merging in multiple object tracking. Cognition 80(1–2):159–177

    CAS  PubMed  Google Scholar 

  31. Pylyshyn Z (2004) Some puzzling findings in multiple object tracking: I. Tracking without keeping track of object identities. Vis Cogn 11(7):801–822

    Google Scholar 

  32. Saiki J (2003) Feature binding in object-file representations of multiple moving items. J Vis 3(1):6–21. https://doi.org/10.1167/3.1.2

    Article  PubMed  Google Scholar 

  33. Tripathy SP, Barrett BT (2004) Severe loss of positional information when detecting deviations in multiple trajectories. J Vis 4(12):1020–1043. https://doi.org/10.1167/4.12.4

    Article  PubMed  Google Scholar 

  34. Alvarez GA, Franconeri SL (2007) How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. J Vis 7(13):14.11–14.10

    Google Scholar 

  35. Shim WM, Alvarez GA, Jiang YV (2008) Spatial separation between targets constrains maintenance of attention on multiple objects. Psychon Bull Rev 15(2):390–397

    PubMed  PubMed Central  Google Scholar 

  36. Franconeri SL, Jonathan SV, Scimeca JM (2010) Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity. Psychol Sci 21(7):920–925. https://doi.org/10.1177/0956797610373935

    Article  CAS  PubMed  Google Scholar 

  37. Liu G, Austen EL, Booth KS et al (2005) Multiple-object tracking is based on scene, not retinal, coordinates. J Exp Psychol Hum Percept Perform 31(2):235–247. https://doi.org/10.1037/0096-1523.31.2.235

    Article  PubMed  Google Scholar 

  38. Cavanagh P, Alvarez GA (2005) Tracking multiple targets with multifocal attention. Trends Cogn Sci 9:349–354

    PubMed  Google Scholar 

  39. Franconeri SL, Alvarez GA, Cavanagh P (2013) Flexible cognitive resources: competitive content maps for attention and memory. Trends Cogn Sci 17(3):134–141. https://doi.org/10.1016/j.tics.2013.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen WY, Howe PD, Holcombe AO (2013) Resource demands of object tracking and differential allocation of the resource. Atten Percept Psychophys 75(4):710–725. https://doi.org/10.3758/s13414-013-0425-1

    Article  PubMed  Google Scholar 

  41. Iordanescu L, Grabowecky M, Suzuki S (2009) Demand-based dynamic distribution of attention and monitoring of velocities during multiple-object tracking. J Vis 9(4):1.1–1.12. https://doi.org/10.1167/9.4.1

    Article  Google Scholar 

  42. Alvarez GA, Cavanagh P (2005) Independent resources for attentional tracking in the left and right visual fields. Psychol Sci 16:637–643

    PubMed  Google Scholar 

  43. Stormer VS, Alvarez GA, Cavanagh P (2014) Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention. J Neurosci 34(35):11526–11533. https://doi.org/10.1523/JNEUROSCI.0980-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Howe PD, Cohen MA, Pinto Y et al (2010) Distinguishing between parallel and serial accounts of multiple object tracking. J Vis 10(8):11. https://doi.org/10.1167/10.8.11

    Article  PubMed  PubMed Central  Google Scholar 

  45. Merkel C, Hopf JM, Heinze HJ et al (2015) Neural correlates of multiple object tracking strategies. Neuroimage 118:63–73. https://doi.org/10.1016/j.neuroimage.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  46. Merkel C, Hopf JM, Schoenfeld MA (2017) Spatio-temporal dynamics of attentional selection stages during multiple object tracking. Neuroimage 146:484–491. https://doi.org/10.1016/j.neuroimage.2016.10.046

    Article  PubMed  Google Scholar 

  47. Merkel C, Stoppel CM, Hillyard SA et al (2014) Spatio-temporal patterns of brain activity distinguish strategies of multiple-object tracking. J Cogn Neurosci 26(1):28–40. https://doi.org/10.1162/jocn_a_00455

    Article  PubMed  Google Scholar 

  48. Bahrami B (2003) Object property encoding and change blindness in multiple object tracking. Vis Cogn 10:949–963

    Google Scholar 

  49. Horowitz TS, Klieger SB, Fencsik DE et al (2007) Tracking unique objects. Percept Psychophys 69(2):172–184

    PubMed  Google Scholar 

  50. Botterill K, Allen R, McGeorge P (2011) Multiple-object tracking: the binding of spatial location and featural identity. Exp Psychol 58(3):196–200. https://doi.org/10.1027/1618-3169/a000085

    Article  CAS  PubMed  Google Scholar 

  51. Oksama L, Hyona J (2008) Dynamic binding of identity and location information: a serial model of multiple identity tracking. Cogn Psychol 56(4):237–283. https://doi.org/10.1016/j.cogpsych.2007.03.001

    Article  PubMed  Google Scholar 

  52. Fehd HM, Seiffert AE (2008) Eye movements during multiple object tracking: where do participants look? Cognition 108(1):201–209. https://doi.org/10.1016/j.cognition.2007.11.008

    Article  PubMed  Google Scholar 

  53. Fehd HM, Seiffert AE (2010) Looking at the center of the targets helps multiple object tracking. J Vis 10(4):19.11–19.13. https://doi.org/10.1167/10.4.19

    Article  Google Scholar 

  54. Zelinsky GJ, Neider MB (2008) An eye movement analysis of multiple object tracking in a realistic environment. Vis Cogn 16(5):553–566

    Google Scholar 

  55. Oksama L, Hyona J (2016) Position tracking and identity tracking are separate systems: evidence from eye movements. Cognition 146:393–409. https://doi.org/10.1016/j.cognition.2015.10.016

    Article  PubMed  Google Scholar 

  56. Li J, Oksama L, Hyona J (2019) Model of multiple identity tracking (MOMIT) 2.0: resolving the serial vs. parallel controversy in tracking. Cognition 182:260–274. https://doi.org/10.1016/j.cognition.2018.10.016

    Article  PubMed  Google Scholar 

  57. Horowitz TS, Cohen MA (2010) Direction information in multiple object tracking is limited by a graded resource. Atten Percept Psychophys 72(7):1765–1775. https://doi.org/10.3758/APP.72.7.1765

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fencsik DE, Klieger SB, Horowitz TS (2007) The role of location and motion information in the tracking and recovery of moving objects. Percept Psychophys 69(4):567–577

    PubMed  Google Scholar 

  59. Keane BP, Pylyshyn ZW (2006) Is motion extrapolation employed in multiple object tracking? Tracking as a low-level, non-predictive function. Cogn Psychol 52(4):346–368

    PubMed  Google Scholar 

  60. Franconeri SL, Pylyshyn ZW, Scholl BJ (2012) A simple proximity heuristic allows tracking of multiple objects through occlusion. Atten Percept Psychophys 74(4):691–702. https://doi.org/10.3758/s13414-011-0265-9

    Article  PubMed  Google Scholar 

  61. Zhong SH, Ma Z, Wilson C et al (2014) Why do people appear not to extrapolate trajectories during multiple object tracking? A computational investigation. J Vis 14(12):12. https://doi.org/10.1167/14.12.12

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vul E, Frank M, Alvarez GA et al (2009) Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model. Adv Neural Inf Process Syst 22:1955–1963

    Google Scholar 

  63. Freyd JJ, Finke RA (1984) Representational momentum. J Exp Psychol Learn Mem Cogn 10:126–132

    Google Scholar 

  64. Freyd JJ, Finke RA (1985) A velocity effect for representational momentum. Bull Psychon Soc 23:443–446

    Google Scholar 

  65. Finke RA, Shyi GC (1988) Mental extrapolation and representational momentum for complex implied motions. J Exp Psychol Learn Mem Cogn 14(1):112–120

    CAS  PubMed  Google Scholar 

  66. Verghese P, McKee SP (2002) Predicting future motion. J Vis 2(5):413–423. https://doi.org/10.1167/2.5.5

    Article  PubMed  Google Scholar 

  67. Scholl BJ, Pylyshyn ZW (1999) Tracking multiple items through occlusion: clues to visual objecthood. Cogn Psychol 38(2):259–290

    CAS  PubMed  Google Scholar 

  68. Flombaum JI, Scholl BJ, Pylyshyn ZW (2008) Attentional resources in visual tracking through occlusion: the high-beams effect. Cognition 107(3):904–931. https://doi.org/10.1016/j.cognition.2007.12.015

    Article  PubMed  Google Scholar 

  69. Watamaniuk SN, McKee SP (1995) Seeing motion behind occluders. Nature 377(6551):729–730. https://doi.org/10.1038/377729a0

    Article  CAS  PubMed  Google Scholar 

  70. Yantis S (1995) Perceived continuity of occluded visual objects. Psychol Sci 6:182–186

    Google Scholar 

  71. Olson IR, Gatenby JC, Leung HC et al (2004) Neuronal representation of occluded objects in the human brain. Neuropsychologia 42(1):95–104

    PubMed  Google Scholar 

  72. Tripathy SP, Narasimhan S, Barrett BT (2007) On the effective number of tracked trajectories in normal human vision. J Vis 7(6):2. https://doi.org/10.1167/7.6.2

    Article  PubMed  Google Scholar 

  73. Howe PD, Holcombe AO (2012) Motion information is sometimes used as an aid to the visual tracking of objects. J Vis 12(13):10. https://doi.org/10.1167/12.13.10

    Article  PubMed  Google Scholar 

  74. Bettencourt KC, Somers DC (2009) Effects of target enhancement and distractor suppression on multiple object tracking capacity. J Vis 9(7):9. https://doi.org/10.1167/9.7.9

    Article  PubMed  Google Scholar 

  75. Intriligator J, Cavanagh P (2001) The spatial resolution of visual attention. Cogn Psychol 43(3):171–216. https://doi.org/10.1006/cogp.2001.0755

    Article  CAS  PubMed  Google Scholar 

  76. VanMarle K, Scholl BJ (2003) Attentive tracking of objects versus substances. Psychol Sci 14(5):498–504. https://doi.org/10.1111/1467-9280.03451

    Article  PubMed  Google Scholar 

  77. Hulleman J (2005) The mathematics of multiple object tracking: from proportions correct to number of objects tracked. Vis Res 45(17):2298–2309. https://doi.org/10.1016/j.visres.2005.02.016

    Article  PubMed  Google Scholar 

  78. Pylyshyn ZW, Annan V Jr (2006) Dynamics of target selection in multiple object tracking (MOT). Spat Vis 19(6):485–504

    PubMed  Google Scholar 

  79. Pylyshyn ZW, Haladjian HH, King CE et al (2008) Selective nontarget inhibition in multiple object tracking. Vis Cogn 16(8):1011–1021. https://doi.org/10.1080/13506280802247486

    Article  Google Scholar 

  80. Tran A, Hoffman JE (2016) Visual attention is required for multiple object tracking. J Exp Psychol Hum Percept Perform 42(12):2103–2114. https://doi.org/10.1037/xhp0000262

    Article  PubMed  Google Scholar 

  81. Atsma J, Koning A, van Lier R (2012) Multiple object tracking: anticipatory attention doesn’t “bounce”. J Vis 12(13):1. https://doi.org/10.1167/12.13.1

    Article  PubMed  Google Scholar 

  82. Alvarez GA, Scholl BJ (2005) How does attention select and track spatially extended objects? New effects of attentional concentration and amplification. J Exp Psychol Gen 134(4):461–476

    PubMed  Google Scholar 

  83. Heinze HJ, Mangun GR, Burchert W et al (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372(8):543–546

    CAS  PubMed  Google Scholar 

  84. Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci 95(3):781–787

    CAS  PubMed  Google Scholar 

  85. Hopf J-M, Boehler CN, Luck SJ et al (2006) Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proc Natl Acad Sci 103(4):1053–1058

    CAS  PubMed  Google Scholar 

  86. Drew T, McCollough AW, Horowitz TS et al (2009) Attentional enhancement during multiple-object tracking. Psychon Bull Rev 16(2):411–417. https://doi.org/10.3758/PBR.16.2.411

    Article  PubMed  PubMed Central  Google Scholar 

  87. Stormer VS, Li SC, Heekeren HR et al (2013) Normal aging delays and compromises early multifocal visual attention during object tracking. J Cogn Neurosci 25(2):188–202. https://doi.org/10.1162/jocn_a_00303

    Article  PubMed  Google Scholar 

  88. Sternshein H, Agam Y, Sekuler R (2011) EEG correlates of attentional load during multiple object tracking. PLoS One 6(7):e22660. https://doi.org/10.1371/journal.pone.0022660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Doran MM, Hoffman JE (2010) The role of visual attention in multiple object tracking: evidence from ERPs. Atten Percept Psychophys 72(1):33–52. https://doi.org/10.3758/APP.72.1.33

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Merkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Merkel, C., Hopf, JM., Schoenfeld, M.A. (2019). How to Perceive Object Permanence in Our Visual Environment: The Multiple Object Tracking Paradigm. In: Pollmann, S. (eds) Spatial Learning and Attention Guidance. Neuromethods, vol 151. Humana, New York, NY. https://doi.org/10.1007/7657_2019_28

Download citation

  • DOI: https://doi.org/10.1007/7657_2019_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9947-7

  • Online ISBN: 978-1-4939-9948-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics