Skip to main content

MicroRNA Expression Profiling by PCR Array in 2D and 3D Differentiated Neural Culture Systems and Target Validation

  • Protocol
  • First Online:
  • 578 Accesses

Part of the book series: Neuromethods ((NM,volume 128))

Abstract

MicroRNAs (miRNAs) have been proven to regulate gene expression at post-transcriptional level and are emerging as strong mediators in neural fate determination (Ambros, Nature 431(7006):350–355, 2004). Here, we evaluated appropriate 3 three dimensional (3D) substrates to differentiate human neural stem cells (hNSCs). We identified and quantified hNSC miRNA contents by PCR array. By using computational algorithms we predicted miRNA target mRNA which correlates with hNSC differentiation and performed target validation by transfection of 3 prime untranslated regions (3′UTR) dual reporter plasmids and dual luciferase assay. Despite the inherent differences between cultures, we were able to consistently show that 3D topography promotes differentiation of hNSCs through modulation of miRNAs associated with cell proliferation and maintenance of stemness.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

1 W:

1 Week

2D:

Two dimensional

3 W:

3 Weeks

3′UTR:

3 Prime untranslated region

3D:

Three dimensional

4-OHT:

4-Hydroxytamoxifen

bFGF:

Basic fibroblast growth factor

DCX:

Doublecortin

EGF:

Epidermal growth factor receptor

GALC:

Galactosylceramidase

GFAP:

Glial fibrillary acidic protein

HNSC:

Human neural stem cell

Hsa-miR:

Human miRNA

ICC:

Immunocytochemistry

MAP2:

Microtubule-associated protein 2

miRNA:

MicroRNA

mRNA:

Messenger RNA

QRT-PCR:

Real-time reverse transcription PCR

S100B:

S100 calcium binding protein B

TUBB3:

Tubulin, beta 3 class III

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi:10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  2. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. doi:10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  3. Spivakov M, Fisher AG (2007) Epigenetic signatures of stem-cell identity. Nat Rev Genet 8(4):263–271. doi:10.1038/nrg2046

    Article  CAS  PubMed  Google Scholar 

  4. Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13(5):377–383

    Article  CAS  PubMed  Google Scholar 

  5. Buxboim A, Discher DE (2010) Stem cells feel the difference. Nat Methods 7(9):695–697. doi:10.1038/nmeth0910-695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1:e119. doi:10.1371/journal.pone.0000119

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26(6):599–609. doi:10.1016/j.biomaterials.2004.03.005

    Article  CAS  PubMed  Google Scholar 

  8. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462(7272):433–441. doi:10.1038/nature08602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nur EKA, Ahmed I, Kamal J, Schindler M, Meiners S (2006) Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 24(2):426–433. doi:10.1634/stemcells.2005-0170

    Article  Google Scholar 

  10. Ortinau S, Schmich J, Block S, Liedmann A, Jonas L, Weiss DG, Helm CA, Rolfs A, Frech MJ (2010) Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells. Biomed Eng Online 9(1):70. doi:10.1186/1475-925X-9-70

    Article  PubMed  PubMed Central  Google Scholar 

  11. Saha K, Pollock JF, Schaffer DV, Healy KE (2007) Designing synthetic materials to control stem cell phenotype. Curr Opin Chem Biol 11(4):381–387. doi:10.1016/j.cbpa.2007.05.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hesse E, Hefferan TE, Tarara JE, Haasper C, Meller R, Krettek C, Lu L, Yaszemski MJ (2010) Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J Biomed Mater Res A 94(2):442–449. doi:10.1002/jbm.a.32696

    PubMed  PubMed Central  Google Scholar 

  13. Budyanto L, Goh YQ, Ooi CP (2009) Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid-liquid phase separation and freeze extraction. J Mater Sci Mater Med 20(1):105–111. doi:10.1007/s10856-008-3545-8

    Article  CAS  PubMed  Google Scholar 

  14. Knight E, Murray B, Carnachan R, Przyborski S (2011) Alvetex(R): polystyrene scaffold technology for routine three dimensional cell culture. Methods Mol Biol 695:323–340. doi:10.1007/978-1-60761-984-0_20

    Article  CAS  PubMed  Google Scholar 

  15. Qutachi O, Vetsch JR, Gill D, Cox H, Scurr DJ, Hofmann S, Muller R, Quirk RA, Shakesheff KM, Rahman CV (2014) Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature. Acta Biomater 10(12):5090–5098. doi:10.1016/j.actbio.2014.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(Suppl 4):467–479. doi:10.1007/s00586-008-0745-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bokhari M, Carnachan RJ, Przyborski SA, Cameron NR (2007) Emulsion- templated porous polymers as scaffolds for three dimensional cell culture: effect of synthesis parameters on scaffold formation and homogeneity. J Mater Chem 17:4088–4094

    Article  CAS  Google Scholar 

  18. Bokhari M, Carnachan RJ, Cameron NR, Przyborski SA (2007) Novel cell culture device enabling three-dimensional cell growth and improved cell function. Biochem Biophys Res Commun 354(4):1095–1100. doi:10.1016/j.bbrc.2007.01.105

    Article  CAS  PubMed  Google Scholar 

  19. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500. doi:10.1038/ng1536

    Article  CAS  PubMed  Google Scholar 

  20. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. doi:10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  21. Stevanato L, Sinden JD (2014) The effects of microRNAs on human neural stem cell differentiation in two- and three-dimensional cultures. Stem Cell Res Ther 5(2):49. doi:10.1186/scrt437

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pollock K, Stroemer P, Patel S, Stevanato L, Hope A, Miljan E, Dong Z, Hodges H, Price J, Sinden JD (2006) A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol 199(1):143–155. doi:10.1016/j.expneurol.2005.12.011

    Article  PubMed  Google Scholar 

  23. http://diana.cslab.ece.ntua.gr/microT/

  24. Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10:295. doi:10.1186/1471-2105-10-295

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen K, Rajewsky N (2006) Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 38(12):1452–1456. doi:10.1038/ng1910

    Article  CAS  PubMed  Google Scholar 

  26. http://pictar.mdc-berlin.de/

  27. http://www.targetscan.org/

  28. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25(2):169–193

    Article  CAS  PubMed  Google Scholar 

  29. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  30. Stevanato L, Hicks C, Sinden JD (2015) Differentiation of a human neural stem cell line on three dimensional cultures, analysis of MicroRNA and putative target genes. J Vis Exp 98. doi:10.3791/52410

  31. Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579(26):5904–5910. doi:10.1016/j.febslet.2005.09.040

    Article  CAS  PubMed  Google Scholar 

  32. Didiano D, Hobert O (2006) Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol 13(9):849–851. doi:10.1038/nsmb1138

    Article  CAS  PubMed  Google Scholar 

  33. Parsons XH, Parsons JF, Moore DA (2012) Genome-scale mapping of MicroRNA signatures in human embryonic stem cell neurogenesis. Mol Med Ther 1(2). doi: 10.4172/2324-8769.1000105

  34. Wang Y, Keys DN, Au-Young JK, Chen C (2009) MicroRNAs in embryonic stem cells. J Cell Physiol 218(2):251–255. doi:10.1002/jcp.21607

    Article  CAS  PubMed  Google Scholar 

  35. Chen H, Shalom-Feuerstein R, Riley J, Zhang SD, Tucci P, Agostini M, Aberdam D, Knight RA, Genchi G, Nicotera P, Melino G, Vasa-Nicotera M (2010) miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun 394(4):921–927. doi:10.1016/j.bbrc.2010.03.076

    Article  CAS  PubMed  Google Scholar 

  36. Weeraratne SD, Amani V, Teider N, Pierre-Francois J, Winter D, Kye MJ, Sengupta S, Archer T, Remke M, Bai AH, Warren P, Pfister SM, Steen JA, Pomeroy SL, Cho YJ (2012) Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol 123(4):539–552. doi:10.1007/s00401-012-0969-5

    Article  CAS  PubMed  Google Scholar 

  37. Cioffi JA, Yue WY, Mendolia-Loffredo S, Hansen KR, Wackym PA, Hansen MR (2010) MicroRNA-21 overexpression contributes to vestibular schwannoma cell proliferation and survival. Otol Neurotol 31(9):1455–1462. doi:10.1097/MAO.0b013e3181f20655

    PubMed  PubMed Central  Google Scholar 

  38. Cirera-Salinas D, Pauta M, Allen RM, Salerno AG, Ramirez CM, Chamorro-Jorganes A, Wanschel AC, Lasuncion MA, Morales-Ruiz M, Suarez Y, Baldan A, Esplugues E, Fernandez-Hernando C (2012) Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle 11(5):922–933. doi:10.4161/cc.11.5.19421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu XS, Chopp M, Wang XL, Zhang L, Hozeska-Solgot A, Tang T, Kassis H, Zhang RL, Chen C, Xu J, Zhang ZG (2013) MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J Biol Chem 288(18):12478–12488. doi:10.1074/jbc.M112.449025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW 2nd, van Rooij E, Olson EN (2011) MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 109(6):670–679. doi:10.1161/CIRCRESAHA.111.248880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trompeter HI, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Schira J, Muller HW, Wernet P (2011) MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One 6(1):e16138. doi:10.1371/journal.pone.0016138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This study was supported by ReNeuron (RENE.L). We acknowledge Julie Heward for helping in the preparation of hNSCs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara Stevanato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stevanato, L., Hicks, C., Thanabalasundaram, L., Sinden, J.D. (2017). MicroRNA Expression Profiling by PCR Array in 2D and 3D Differentiated Neural Culture Systems and Target Validation. In: Kye, M. (eds) MicroRNA Technologies. Neuromethods, vol 128. Humana Press, New York, NY. https://doi.org/10.1007/7657_2017_1

Download citation

  • DOI: https://doi.org/10.1007/7657_2017_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7173-2

  • Online ISBN: 978-1-4939-7175-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics