Experimental Methods for Functional Studies of microRNAs in Animal Models of Psychiatric Disorders

Protocol
Part of the Neuromethods book series (NM, volume 128)

Abstract

Pharmacological treatments for psychiatric illnesses are often unsuccessful. This is largely due to the poor understanding of the molecular mechanisms underlying these disorders. We are particularly interested in elucidating the mechanism of affective disorders rooted in traumatic experiences. To date, the research of mental disorders in general has focused on the causal role of individual genes and proteins, an approach that is inconsistent with the proposed polygenetic nature of these disorders. We recently took an alternative direction, by establishing the role of miRNAs in the coding of stress-related, fear-provoking memories. Here we describe in detail our work on the role of miR-33 in state-dependent learning, a process implicated in dissociative amnesia, wherein memories formed in a certain brain state can best be retrieved if the brain is in the same state. We present the specific experimental approaches we apply to study the role of miRNAs in this model and demonstrate that miR-33 regulates the susceptibility to state-dependent learning induced by inhibitory neurotransmission.

Keywords:

microRNAs miR-33 Behavior Learning Hippocampus LNA inhibitors Lentiviral vectors 

Notes

Acknowledgments

This work was supported by NIH grants NIMH/MH078064 (J.R.) and Ken and Ruth Davee Award for Innovative Investigations in Mood Disorders, (J.R. and V.J.).

References

  1. 1.
    Sar V (2011) Developmental trauma, complex PTSD, and the current proposal of DSM-5. Eur J Psychotraumatol 2:5622. doi:  10.3402/ejpt.v2i0.5622
  2. 2.
    Sar V, Ross C (2006) Dissociative disorders as a confounding factor in psychiatric research. Psychiatr Clin North Am 29(1):129–144, ixCrossRefPubMedGoogle Scholar
  3. 3.
    Lanius RA et al (2010) Emotion modulation in PTSD: clinical and neurobiological evidence for a dissociative subtype. Am J Psychiatry 167(6):640–647CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ross CA, Keyes BB (2004) Dissociation and schizophrenia. J Trauma Dissociation 5:69–83CrossRefGoogle Scholar
  5. 5.
    Dorahy MJ et al (2013) Complex trauma and intimate relationships: the impact of shame, guilt and dissociation. J Affect Disord 147(1–3):72–79CrossRefPubMedGoogle Scholar
  6. 6.
    Krammer S, Kleim B, Simmen-Janevska K, Maercker A (2015) Childhood trauma and complex posttraumatic stress disorder symptoms in older adults: a study of direct effects and social-interpersonal factors as potential mediators. J Trauma Dissociation 26:1–16Google Scholar
  7. 7.
    Renard SB, Pijnenborg M, Lysaker PH (2012) Dissociation and social cognition in schizophrenia spectrum disorder. Schizophr Res 137(1–3):219–223CrossRefPubMedGoogle Scholar
  8. 8.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefPubMedGoogle Scholar
  9. 9.
    Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770CrossRefPubMedGoogle Scholar
  10. 10.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355CrossRefPubMedGoogle Scholar
  12. 12.
    Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303(5666):2022–2025CrossRefPubMedGoogle Scholar
  13. 13.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefPubMedGoogle Scholar
  14. 14.
    Qi J et al (2009) microRNAs regulate human embryonic stem cell division. Cell Cycle 8(22):3729–3741CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Reinhart BJ et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang X, Wan G, Berger FG, He X, Lu X (2011) The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol Cell 41(4):371–383CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li R et al (2010) MicroRNAs involved in neoplastic transformation of liver cancer stem cells. J Exp Clin Cancer Res 29:169CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cittelly DM et al (2010) Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer 9:317CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rederstorff M, Huttenhofer A (2010) Small non-coding RNAs in disease development and host-pathogen interactions. Curr Opin Mol Ther 12(6):684–694PubMedGoogle Scholar
  20. 20.
    Mestdagh P et al (2010) The miR-17-92 microRNA cluster regulates multiple components of the TGF-beta pathway in neuroblastoma. Mol Cell 40(5):762–773CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moriyama T et al (2009) MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther 8(5):1067–1074CrossRefPubMedGoogle Scholar
  22. 22.
    Callis TE et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119(9):2772–2786CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dong S et al (2009) MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 284(43):29514–29525CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fulci V et al (2010) miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol 71(2):206–211CrossRefPubMedGoogle Scholar
  25. 25.
    Schratt GM et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289CrossRefPubMedGoogle Scholar
  26. 26.
    Kye MJ et al (2007) Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA 13(8):1224–1234CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Siegel G et al (2009) A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11(6):705–716CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106(2):650–661CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Caygill EE, Johnston LA (2008) Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol 18(13):943–950CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wayman GA et al (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A 105(26):9093–9098CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vessey JP et al (2006) Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules. J Neurosci 26(24):6496–6508CrossRefPubMedGoogle Scholar
  32. 32.
    Hansen KF, Sakamoto K, Wayman GA, Impey S, Obrietan K (2010) Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One 5(11):e15497CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gao J et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310):1105–1109CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Perkins DO et al (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8(2):R27CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim AH et al (2010) MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 124(1–3):183–191CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Moreau MP, Bruse SE, David-Rus R, Buyske S, Brzustowicz LM (2011) Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biol Psychiatry 69(2):188–193CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cammaerts S et al (2015) Schizophrenia-associated MIR204 regulates noncoding RNAs and affects neurotransmitter and ion channel gene sets. PLoS One 10(12):e0144428CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Saus E et al (2010) Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet 19(20):4017–4025CrossRefPubMedGoogle Scholar
  39. 39.
    Xu Y et al (2010) A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform. J Affect Disord 127(1–3):332–336CrossRefPubMedGoogle Scholar
  40. 40.
    Liang Y et al (2015) Genetic variants in the promoters of let-7 family are associated with an increased risk of major depressive disorder. J Affect Disord 183:295–299CrossRefPubMedGoogle Scholar
  41. 41.
    Braun BG (1984) Towards a theory of multiple personality and other dissociative phenomena. Psychiatr Clin North Am 7(1):171–193PubMedGoogle Scholar
  42. 42.
    Spiegel D et al (2011) Dissociative disorders in DSM-5. Depress Anxiety 28(9):824–852CrossRefPubMedGoogle Scholar
  43. 43.
    Jovasevic V et al (2015) GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat Neurosci 18(9):1265–1271CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Radulovic J, Sydow S, Spiess J (1998) Characterization of native corticotropin-releasing factor receptor type 1 (CRFR1) in the rat and mouse central nervous system. J Neurosci Res 54(4):507–521CrossRefPubMedGoogle Scholar
  45. 45.
    Kim YK, Yeo J, Ha M, Kim B, Kim VN (2011) Cell adhesion-dependent control of microRNA decay. Mol Cell 43(6):1005–1014CrossRefPubMedGoogle Scholar
  46. 46.
    Obika S et al (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C-3,-endo sugar puckering. Tetrahedron Lett 38(50):8735–8738CrossRefGoogle Scholar
  47. 47.
    Kaur H, Arora A, Wengel J, Maiti S (2006) Thermodynamic, counterion, and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry 45(23):7347–7355CrossRefPubMedGoogle Scholar
  48. 48.
    Owczarzy R, You Y, Groth CL, Tataurov AV (2011) Stability and mismatch discrimination of locked nucleic acid-DNA duplexes. Biochemistry 50(43):9352–9367CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cheng HY et al (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54(5):813–829CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Vosberg HP, Eckstein F (1982) Effect of deoxynucleoside phosphorothioates incorporated in DNA on cleavage by restriction enzymes. J Biol Chem 257(11):6595–6599PubMedGoogle Scholar
  51. 51.
    Othumpangat S, Walton C, Piedimonte G (2012) MicroRNA-221 modulates RSV replication in human bronchial epithelium by targeting NGF expression. PLoS One 7(1):e30030CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pal R, Greene S (2015) microRNA-10b is overexpressed and critical for cell survival and proliferation in medulloblastoma. PLoS One 10(9):e0137845CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang S et al (2015) The potent tumor suppressor miR-497 inhibits cancer phenotypes in nasopharyngeal carcinoma by targeting ANLN and HSPA4L. Oncotarget 6(34):35893–35907PubMedPubMedCentralGoogle Scholar
  54. 54.
    Liu FJ et al (2015) MiR-335 regulates Hif-1alpha to reduce cell death in both mouse cell line and rat ischemic models. PLoS One 10(6):e0128432CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zovoilis A et al (2011) microRNA-34c is a novel target to treat dementias. EMBO J 30(20):4299–4308CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Guo R, Abdelmohsen K, Morin PJ, Gorospe M (2013) Novel microRNA reporter uncovers repression of let-7 by GSK-3beta. PLoS One 8(6):e66330CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jiang L et al (2010) Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer 127(3):505–512CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wu T et al (2012) miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem 287(10):7503–7511CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Krishnan K et al (2013) MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA 19(2):230–242CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Shi L, Ko ML, Ko GY (2009) Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel alpha1C subunit in chicken cone photoreceptors. J Biol Chem 284(38):25791–25803CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Orom UA, Lund AH (2007) Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43(2):162–165CrossRefPubMedGoogle Scholar
  62. 62.
    Nonne N, Ameyar-Zazoua M, Souidi M, Harel-Bellan A (2010) Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Res 38(4):e20CrossRefPubMedGoogle Scholar
  63. 63.
    Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471CrossRefPubMedGoogle Scholar
  64. 64.
    Wani S, Cloonan N (2014) Profiling direct mRNA-microRNA interactions using synthetic biotinylated microRNA-duplexes. bioRxiv. doi:  10.1101/005439
  65. 65.
    Jovasevic V, Naghavi MH, Walsh D (2015) Microtubule plus end-associated CLIP-170 initiates HSV-1 retrograde transport in primary human cells. J Cell Biol 211(2):323–337CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Han Z et al (2015) Establishment of lipofection protocol for efficient miR-21 transfection into cortical neurons in vitro. DNA Cell Biol 34(12):703–709CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Banigan MG et al (2013) Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One 8(1):e48814CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Baek D et al (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hendrickson DG et al (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 7(11):e1000238CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesNorthwestern UniversityChicagoUSA
  2. 2.Department of Psychiatry and Behavioral SciencesNorthwestern UniversityChicagoUSA

Personalised recommendations