Skip to main content

Isolating and Screening Subcellular miRNAs in Neuron

  • Protocol
  • First Online:
MicroRNA Technologies

Part of the book series: Neuromethods ((NM,volume 128))

  • 572 Accesses

Abstract

Since local protein synthesis is proposed to explain spatial and temporal regulation of gene expression in highly polarized cells such as neurons, various mechanisms for regulating protein synthesis are suggested. Among them, microRNA (miRNA) is one of the key regulators for protein synthesis in the synaptic area. As miRNAs can selectively repress mRNA translation with sequence-specific manner, profiling of miRNAs located in synaptic area has been an important topic to understand the function of neuronal miRNAs. Interestingly, many miRNAs are detected in the synaptic area, but their subcellular distribution in neuron varies. This suggests that there are cellular mechanisms actively regulating miRNA expression and localization in subcellular compartments of neurons. In this chapter, we review currently available methods of synaptic miRNA profiling from isolating samples, purifying RNAs, and measuring expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holt CE, Schuman EM (2013) The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80(3):648–657. doi:10.1016/j.neuron.2013.10.036, S0896-6273(13)00988-4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127(1):49–58. doi:10.1016/j.cell.2006.09.014, S0092-8674(06)01206-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Jung H, Yoon BC, Holt CE (2012) Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 13(5):308–324. doi:10.1038/nrn3210, nrn3210 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7(12):911–920. doi:10.1038/nrn2037, nrn2037 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Hengst U, Cox LJ, Macosko EZ, Jaffrey SR (2006) Functional and selective RNA interference in developing axons and growth cones. J Neurosci 26(21):5727–5732. doi:10.1523/JNEUROSCI.5229-05.2006, 26/21/5727 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106(2):650–661. doi:10.1111/j.1471-4159.2008.05413.x, JNC5413 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banerjee S, Neveu P, Kosik KS (2009) A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 64(6):871–884. doi:10.1016/j.neuron.2009.11.023, S0896-6273(09)00939-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Kye MJ, Liu T, Levy SF, Xu NL, Groves BB, Bonneau R, Lao K, Kosik KS (2007) Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA 13(8):1224–1234. doi:10.1261/rna.480407, rna.480407 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Natera-Naranjo O, Aschrafi A, Gioio AE, Kaplan BB (2010) Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA 16(8):1516–1529. doi:10.1261/rna.1833310, rna.1833310 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310):1105–1109. doi:10.1038/nature09271, nature09271 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amin ND, Bai G, Klug JR, Bonanomi D, Pankratz MT, Gifford WD, Hinckley CA, Sternfeld MJ, Driscoll SP, Dominguez B, Lee KF, Jin X, Pfaff SL (2015) Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure. Science 350(6267):1525–1529. doi:10.1126/science.aad2509, 350/6267/1525 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467(7311):86–90. doi:10.1038/nature09284, nature09284 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Vienberg S, Geiger J, Madsen S, Dalgaard LT (2016) MicroRNAs in metabolism. Acta Physiol (Oxf). doi:10.1111/apha.12681

    Google Scholar 

  14. Kye MJ, Goncalves Ido C (2014) The role of miRNA in motor neuron disease. Front Cell Neurosci 8:15. doi:10.3389/fncel.2014.00015

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105(17):6415–6420. doi:10.1073/pnas.0710263105, 0710263105 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28(5):1213–1223. doi:10.1523/JNEUROSCI.5065-07.2008, 28/5/1213 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gui Y, Liu H, Zhang L, Lv W, Hu X (2015) Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 6(35):37043–37053. doi:10.18632/oncotarget.6158, 6158 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  18. Briggs CE, Wang Y, Kong B, Woo TU, Iyer LK, Sonntag KC (2015) Midbrain dopamine neurons in Parkinson’s disease exhibit a dysregulated miRNA and target-gene network. Brain Res 1618:111–121. doi:10.1016/j.brainres.2015.05.021, S0006-8993(15)00423-0 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN (2009) MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326(5959):1549–1554. doi:10.1126/science.1181046, 326/5959/1549 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kye MJ, Niederst ED, Wertz MH, Goncalves ID, Akten B, Dover KZ, Peters M, Riessland M, Neveu P, Wirth B, Kosik KS, Sardi SP, Monani UR, Passini MA, Sahin M (2014) SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet. doi:10.1093/hmg/ddu350, ddu350 [pii]

    PubMed  PubMed Central  Google Scholar 

  21. Boido M, Vercelli A (2016) Neuromuscular junctions as key contributors and therapeutic targets in spinal muscular atrophy. Front Neuroanat 10:6. doi:10.3389/fnana.2016.00006

    Article  PubMed  PubMed Central  Google Scholar 

  22. Armstrong GA, Drapeau P (2013) Loss and gain of FUS function impair neuromuscular synaptic transmission in a genetic model of ALS. Hum Mol Genet 22(21):4282–4292. doi:10.1093/hmg/ddt278, ddt278 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Machamer JB, Collins SE, Lloyd TE (2014) The ALS gene FUS regulates synaptic transmission at the Drosophila neuromuscular junction. Hum Mol Genet 23(14):3810–3822. doi:10.1093/hmg/ddu094, ddu094 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di J, Cohen LS, Corbo CP, Phillips GR, El Idrissi A, Alonso AD (2016) Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss. Sci Rep 6:20833. doi:10.1038/srep20833, srep20833 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boese AS, Saba R, Campbell K, Majer A, Medina S, Burton L, Booth TF, Chong P, Westmacott G, Dutta SM, Saba JA, Booth SA (2016) MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol Cell Neurosci 71:13–24. doi:10.1016/j.mcn.2015.12.001, S1044-7431(15)30041-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Most D, Leiter C, Blednov YA, Harris RA, Mayfield RD (2016) Synaptic microRNAs coordinately regulate synaptic mRNAs: perturbation by chronic alcohol consumption. Neuropsychopharmacology 41(2):538–548. doi:10.1038/npp.2015.179, npp2015179 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by Deutsche Forschungsgemeinschaft (German Research Foundation), University of Cologne (Cologne Fortune), and cure SMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jeong Kye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kye, M.J. (2016). Isolating and Screening Subcellular miRNAs in Neuron. In: Kye, M. (eds) MicroRNA Technologies. Neuromethods, vol 128. Humana Press, New York, NY. https://doi.org/10.1007/7657_2016_4

Download citation

  • DOI: https://doi.org/10.1007/7657_2016_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7173-2

  • Online ISBN: 978-1-4939-7175-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics