Combining Anterograde Tracing and Immunohistochemistry to Define Neuronal Synaptic Circuits

Part of the Neuromethods book series (NM, volume 115)


Connectivity among different brain regions has been studied since the original neuronal descriptions by Santiago Ramón y Cajal. Ultimately, only evidence of synapse proves actual connectivity between neurons originating from different brain regions. This report focuses on technical aspects of anterograde neuroanatomical tract tracing combined with immunohistochemical methods specific for ultrastructural analysis of neuronal contacts, synapses. Specifically, this technique combines peroxidase labeling of the anterograde tracer, biotinylated dextran amine (BDA 10 kDa) with immunoperoxidase-silver enhancement detection of a neuroactive substance present in the structures postsynaptic to tracer-labeled axon terminals. This technique is widely utilized to identify neuronal circuits as well as the neurochemical content of neurons that are implicated in incredibly complex and dynamic tasks. In this report we discuss technical steps in detail, as well as the technique’s advantages and limitations.


Anterograde tracer Biotinylated dextran amine BDA Electron microscopy Immunohistochemistry Synapse Tyrosine hydroxylase Ultrastructure 



Avidin–biotin complex


Biotinylated dextran amine


Bovine serum albumin




Horseradish peroxidase


Osmium tetroxide


Phosphate buffer


Phosphate buffer saline


Tris-buffered saline


Tyrosine hydroxylase



This research was supported by (1) USPHS Grant DAO3980 from the National Institutes on Drug Abuse (NIDA) to Dr. Herbert K. Proudfit; (2) grants ANA#96002249 and NIDA 09082 to Dr. Elisabeth J. Van Bockstaele; as well as the (3) National Institutes of Health R03 DA030874 grant to Dr. Dusica Bajic.


  1. 1.
    Elias LJ, Saucier DM (2005) Neuropsychology: clinical and experimental foundations. Pearson, London, p 560Google Scholar
  2. 2.
    Lanciego JL, Wouterlood FG (2011) A half century of experimental neuroanatomical tracing. J Chem Neuroanat 42(3):157–183CrossRefPubMedGoogle Scholar
  3. 3.
    Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41(3):239–254CrossRefPubMedGoogle Scholar
  4. 4.
    Reiner A et al (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Methods 103(1):23–37CrossRefPubMedGoogle Scholar
  5. 5.
    Reiner A, Honing MG (2006) Dextran amines: versatile tools for anterograde and retrograde studies of nervous system connectivity. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3: molecules, neurons, and systems. Springer, New York City, NY, pp 304–335CrossRefGoogle Scholar
  6. 6.
    Bajic D, Proudfit HK, Van Bockstaele EJ (2000) Periaqueductal gray neurons monosynaptically innervate extranuclear noradrenergic dendrites in the rat pericoerulear region. J Comp Neurol 427(4):649–662CrossRefPubMedGoogle Scholar
  7. 7.
    Bajic D, Van Bockstaele EJ, Proudfit HK (2001) Ultrastructural analysis of ventrolateral periaqueductal gray projections to the A7 catecholamine cell group. Neuroscience 104(1):181–197CrossRefPubMedGoogle Scholar
  8. 8.
    Bajic D, Van Bockstaele EJ, Proudfit HK (2012) Ultrastructural analysis of rat ventrolateral periaqueductal gray projections to the A5 cell group. Neuroscience 224:145–159CrossRefPubMedGoogle Scholar
  9. 9.
    Bozzola JJ, Russell LD (1999) Specimen preparation for transmission electron microscopy. In: Bozzola JJ, Russell LD (eds) Electron microscopy : principles and techniques for biologists. Jones & Bartlett Publishers, Sudbury, MA, pp 16–47Google Scholar
  10. 10.
    Hayat MA (2000) Principles and techniques of electron microscopy: biological applications. Cambridge University Press, New York, NYGoogle Scholar
  11. 11.
    Gonzalo N et al (2001) A sequential protocol combining dual neuroanatomical tract-tracing with the visualization of local circuit neurons within the striatum. J Neurosci Methods 111(1):59–66CrossRefPubMedGoogle Scholar
  12. 12.
    Wouterlood FG, Jorritsma-Byham B (1993) The anterograde neuroanatomical tracer biotinylated dextran-amine: comparison with the tracer Phaseolus vulgaris-leucoagglutinin in preparations for electron microscopy. J Neurosci Methods 48(1-2):75–87CrossRefPubMedGoogle Scholar
  13. 13.
    Bajic D, Proudfit HK (2013) Projections from the rat cuneiform nucleus to the A7, A6 (locus coeruleus), and A5 pontine noradrenergic cell groups. J Chem Neuroanat 50–51:11–20CrossRefPubMedGoogle Scholar
  14. 14.
    Bajic D, Proudfit HK (1999) Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol 405(3):359–379CrossRefPubMedGoogle Scholar
  15. 15.
    Scopsi L et al (1986) Silver-enhanced colloidal gold probes as markers for scanning electron microscopy. Histochemistry 86(1):35–41CrossRefPubMedGoogle Scholar
  16. 16.
    Chan J, Aoki C, Pickel VM (1990) Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding. J Neurosci Methods 33(2-3):113–127CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pickel VM, Chan J (1993) Electron microscopic immunocytochemical labeling of endogenous and/or transported antigens in rat brain using silver-intensified one-nanometer colloidal gold. In: Cuello AC (ed) Immunohistochemistry II. Willey, New York City, NY, pp 265–280Google Scholar
  18. 18.
    Peters A, Palay SL (1996) The morphology of synapses. J Neurocytol 25(12):687–700CrossRefPubMedGoogle Scholar
  19. 19.
    Peters A, Palay SL, Webster HD (1992) Fine structure of the nervous system: neurons and their supporting cells, 3rd edn. Oxford University Press, New York, NYGoogle Scholar
  20. 20.
    Hunter EE, Silver M (1993) Practical electron microscopy: a beginner’s illustrated guide, 2nd edn. Cambridge University Press, New York, NY, p 188CrossRefGoogle Scholar
  21. 21.
    Bozzola JJ, Russell LD (1998) Electron microscopy, 2nd edn. Jones & Bartlett Publishers, Toronto, ONGoogle Scholar
  22. 22.
    Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433PubMedPubMedCentralGoogle Scholar
  23. 23.
    Brandt HM, Apkarian AV (1992) Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey. J Neurosci Methods 45(1-2):35–40CrossRefPubMedGoogle Scholar
  24. 24.
    Chamberlin NL et al (1998) Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res 793(1-2):169–175CrossRefPubMedGoogle Scholar
  25. 25.
    Gautron L et al (2010) Identifying the efferent projections of leptin-responsive neurons in the dorsomedial hypothalamus using a novel conditional tracing approach. J Comp Neurol 518(11):2090–2108CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Anderson KD, Karle EJ, Reiner A (1994) A pre-embedding triple-label electron microscopic immunohistochemical method as applied to the study of multiple inputs to defined tegmental neurons. J Histochem Cytochem 42(1):49–56CrossRefPubMedGoogle Scholar
  27. 27.
    Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336(6195):170–173CrossRefPubMedGoogle Scholar
  28. 28.
    Omelchenko N, Bell R, Sesack SR (2009) Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area. Eur J Neurosci 30(7):1239–1250CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Omelchenko N, Sesack SR (2009) Ultrastructural analysis of local collaterals of rat ventral tegmental area neurons: GABA phenotype and synapses onto dopamine and GABA cells. Synapse 63(10):895–906CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Anesthesiology, Perioperative and Pain MedicineBoston Children’s HospitalBostonUSA
  2. 2.Department of AnaesthesiaHarvard Medical SchoolBostonUSA

Personalised recommendations