Skip to main content

Positron Emission Tomography-Based Molecular Imaging

  • Protocol
  • First Online:
Animal Models of Brain Tumors

Abstract

Positron emission tomography (PET) is a nuclear imaging technique that can yield information on the temporal and spatial dynamics of various disease-specific or drug-induced biological alterations in intact tissues and living organisms. In this chapter we elucidate how this information can be generated and used in brain tumor animal models to give insight into tumor characteristics and guide anticancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buck AK, Herrmann K, Shen C, Dechow T, Schwaiger M, Wester HJ (2009) Molecular imaging of proliferation in vivo: positron emission tomography with [18F]fluorothymidine. Methods 48:205–215

    Article  PubMed  CAS  Google Scholar 

  2. Xi W, Tian M, Zhang H (2011) Molecular imaging in neuroscience research with small-animal PET in rodents. Neurosci Res 70:133–143

    Article  PubMed  Google Scholar 

  3. Corcoran A, De Ridder LI, Del Duca D, Kalala OJ, Lah T, Pilkington GJ, Del Maestro RF (2003) Evolution of the brain tumour spheroid model: transcending current model limitations. Acta Neurochir (Wien) 145:819–824

    Article  CAS  Google Scholar 

  4. Holtkamp N, Afanasieva A, Elstner A, van Landeghem FK, Konneker M, Kuhn SA, Kettenmann H, von Deimling A (2005) Brain slice invasion model reveals genes differentially regulated in glioma invasion. Biochem Biophys Res Commun 336:1227–1233

    Article  PubMed  CAS  Google Scholar 

  5. Ohnishi T, Matsumura H, Izumoto S, Hiraga S, Hayakawa T (1998) A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Res 58:2935–2940

    PubMed  CAS  Google Scholar 

  6. Pilkington GJ, Bjerkvig R, De Ridder L, Kaaijk P (1997) In vitro and in vivo models for the study of brain tumour invasion. Anticancer Res 17:4107–4109

    PubMed  CAS  Google Scholar 

  7. Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 94:299–312

    Article  PubMed  Google Scholar 

  8. Fomchenko EI, Holland EC (2006) Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res 12:5288–5297

    Article  PubMed  CAS  Google Scholar 

  9. Huse JT, Holland EC (2009) Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 19:132–143

    Article  PubMed  CAS  Google Scholar 

  10. Schnockel U, Hermann S, Stegger L, Law M, Kuhlmann M, Schober O, Schafers K, Schafers M (2010) Small-animal PET: a promising, non-invasive tool in pre-clinical research. Eur J Pharm Biopharm 74:50–54

    Article  PubMed  Google Scholar 

  11. Herschman HR (2004) PET reporter genes for noninvasive imaging of gene therapy, cell tracking and transgenic analysis. Crit Rev Oncol Hematol 51:191–204

    Article  PubMed  Google Scholar 

  12. Yu EY, Mankoff DA (2007) Positron emission tomography imaging as a cancer biomarker. Expert Rev Mol Diagn 7:659–672

    Article  PubMed  Google Scholar 

  13. Huang SC (2000) Anatomy of SUV. Standardized uptake value. Nucl Med Biol 27:643–646

    Article  PubMed  CAS  Google Scholar 

  14. Shoghi KI (2009) Quantitative small animal PET. Q J Nucl Med Mol Imaging 53:365–373

    PubMed  CAS  Google Scholar 

  15. Beer AJ, Kessler H, Wester HJ, Schwaiger M (2011) PET Imaging of Integrin alphaVbeta3 Expression. Theranostics 1:48–57

    Article  PubMed  CAS  Google Scholar 

  16. Neves AA, Brindle KM (2006) Assessing responses to cancer therapy using molecular imaging. Biochim Biophys Acta 1766:242–261

    PubMed  CAS  Google Scholar 

  17. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61

    Article  PubMed  CAS  Google Scholar 

  18. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed  CAS  Google Scholar 

  19. Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ (2010) Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 9:906–920

    Article  PubMed  Google Scholar 

  20. Herholz K, Coope D, Jackson A (2007) Metabolic and molecular imaging in neuro-oncology. Lancet Neurol 6:711–724

    Article  PubMed  CAS  Google Scholar 

  21. Schober O, Meyer GJ, Stolke D, Hundeshagen H (1985) Brain tumor imaging using C-11-labeled L-methionine and D-methionine. J Nucl Med 26:98–99

    PubMed  CAS  Google Scholar 

  22. Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, Coenen HH, Pauleit D (2006) O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294

    Article  PubMed  CAS  Google Scholar 

  23. Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G, Galldiks N, Klein JC, Sobesky J, Hilker R, Vollmar S, Herholz K, Wienhard K, Heiss WD (2005) 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46:1948–1958

    PubMed  CAS  Google Scholar 

  24. Popperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, Gildehaus FJ, Kretzschmar HA, Tonn JC, Tatsch K (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942

    Article  PubMed  Google Scholar 

  25. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, Ohata K (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699

    Article  PubMed  Google Scholar 

  26. Galldiks N, Kracht LW, Burghaus L, Thomas A, Jacobs AH, Heiss WD, Herholz K (2006) Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 33:516–524

    Article  PubMed  CAS  Google Scholar 

  27. Alexiou GA, Tsiouris S, Kyritsis AP, Argyropoulou MI, Voulgaris S, Fotopoulos AD (2010) Assessment of glioma proliferation using imaging modalities. J Clin Neurosci 17:1233–1238

    Article  PubMed  Google Scholar 

  28. Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P, Peterson LM, Vallieres E, Wood DE (2002) In vivo validation of 3′deoxy-3′-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 8:3315–3323

    PubMed  CAS  Google Scholar 

  29. Wells P, Gunn RN, Alison M, Steel C, Golding M, Ranicar AS, Brady F, Osman S, Jones T, Price P (2002) Assessment of proliferation in vivo using 2-[(11)C]thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res 62:5698–5702

    PubMed  CAS  Google Scholar 

  30. Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, Mattfeldt T, Tepsic D, Bunjes D, Mottaghy FM, Krause BJ, Neumaier B, Dohner H, Moller P, Reske SN (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66:11055–11061

    Article  PubMed  CAS  Google Scholar 

  31. Buck AK, Schirrmeister H, Hetzel M, Von Der Heide M, Halter G, Glatting G, Mattfeldt T, Liewald F, Reske SN, Neumaier B (2002) 3-deoxy-3-[(18)F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 62:3331–3334

    PubMed  CAS  Google Scholar 

  32. Wagner M, Seitz U, Buck A, Neumaier B, Schultheiss S, Bangerter M, Bommer M, Leithauser F, Wawra E, Munzert G, Reske SN (2003) 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-Cell lymphoma model and in the human disease. Cancer Res 63:2681–2687

    PubMed  CAS  Google Scholar 

  33. Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, Coombes RC, Aboagye EO (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65:10104–10112

    Article  PubMed  CAS  Google Scholar 

  34. Backes H, Ullrich R, Neumaier B, Kracht L, Wienhard K, Jacobs AH (2009) Noninvasive quantification of 18F-FLT human brain PET for the assessment of tumour proliferation in patients with high-grade glioma. Eur J Nucl Med Mol Imaging 36:1960–1967

    Article  PubMed  Google Scholar 

  35. van Waarde A, Cobben DC, Suurmeijer AJ, Maas B, Vaalburg W, de Vries EF, Jager PL, Hoekstra HJ, Elsinga PH (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45:695–700

    PubMed  Google Scholar 

  36. Lee TS, Ahn SH, Moon BS, Chun KS, Kang JH, Cheon GJ, Choi CW, Lim SM (2009) Comparison of 18F-FDG, 18F-FET and 18F-FLT for differentiation between tumor and inflammation in rats. Nucl Med Biol 36:681–686

    Article  PubMed  CAS  Google Scholar 

  37. Mertens K, Slaets D, Lambert B, Acou M, De Vos F, Goethals I (2010) PET with (18)F-labelled choline-based tracers for tumour imaging: a review of the literature. Eur J Nucl Med Mol Imaging 37:2188–2193

    Article  PubMed  CAS  Google Scholar 

  38. Kwee SA, Coel MN, Lim J, Ko JP (2004) Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumor evaluation. J Neuroimaging 14:285–289

    PubMed  Google Scholar 

  39. Rottenburger C, Hentschel M, Kelly T, Trippel M, Brink I, Reithmeier T, Tobias Meyer P, Nikkhah G (2011) Comparison of C-11 Methionine and C-11 Choline for PET imaging of brain metastases: a prospective pilot study. Clin Nucl Med 36:639–642

    Article  PubMed  Google Scholar 

  40. Kwee SA, Ko JP, Jiang CS, Watters MR, Coel MN (2007) Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology 244:557–565

    Article  PubMed  Google Scholar 

  41. Jouanneau E (2008) Angiogenesis and gliomas: current issues and development of surrogate markers. Neurosurgery 62:31–50, discussion 50

    Article  PubMed  Google Scholar 

  42. Haubner R, Beer AJ, Wang H, Chen X (2010) Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging 37(Suppl 1):S86–103

    Article  PubMed  Google Scholar 

  43. Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM (2004) Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med 45:1851–1859

    PubMed  Google Scholar 

  44. Serganova I, Doubrovin M, Vider J, Ponomarev V, Soghomonyan S, Beresten T, Ageyeva L, Serganov A, Cai S, Balatoni J, Blasberg R, Gelovani J (2004) Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 64:6101–6108

    Article  PubMed  CAS  Google Scholar 

  45. Blankenberg FG (2008) In vivo detection of apoptosis. J Nucl Med 49(Suppl 2):81S–95S

    Article  PubMed  CAS  Google Scholar 

  46. Waerzeggers Y, Monfared P, Viel T, Faust A, Kopka K, Schäfers M, Tavitian B, Winkeler A, Jacobs A (in press) Specific biomarkers of receptors, pathways of inhibition and targeted therapies. Part II: pre-clinical developments. Br J Radiol

    Google Scholar 

  47. Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H, Makino K, Saya H, Hirano H, Kuratsu J, Oka K, Ishimaru Y, Ushio Y (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970

    PubMed  CAS  Google Scholar 

  48. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024

    Article  PubMed  CAS  Google Scholar 

  49. Stragliotto G, Vega F, Stasiecki P, Gropp P, Poisson M, Delattre JY (1996) Multiple infusions of anti-epidermal growth factor receptor (EGFR) monoclonal antibody (EMD 55,900) in patients with recurrent malignant gliomas. Eur J Cancer 32A:636–640

    Article  PubMed  CAS  Google Scholar 

  50. Lee FT, O’Keefe GJ, Gan HK, Mountain AJ, Jones GR, Saunder TH, Sagona J, Rigopoulos A, Smyth FE, Johns TG, Govindan SV, Goldenberg DM, Old LJ, Scott AM (2010) Immuno-PET quantitation of de2-7 epidermal growth factor receptor expression in glioma using 124I-IMP-R4-labeled antibody ch806. J Nucl Med 51:967–972

    Article  PubMed  CAS  Google Scholar 

  51. Gelovani JG (2008) Molecular imaging of epidermal growth factor receptor expression-activity at the kinase level in tumors with positron emission tomography. Cancer Metastasis Rev 27(4):645–53

    Article  PubMed  CAS  Google Scholar 

  52. Miyagawa T, Gogiberidze G, Serganova I, Cai S, Balatoni JA, Thaler HT, Ageyeva L, Pillarsetty N, Finn RD, Blasberg RG (2008) Imaging of HSV-tk Reporter gene expression: comparison between [18F]FEAU, [18F]FFEAU, and other imaging probes. J Nucl Med 49:637–648

    Article  PubMed  CAS  Google Scholar 

  53. Germano IM, Binello E (2009) Gene therapy as an adjuvant treatment for malignant gliomas: from bench to bedside. J Neurooncol 93:79–87

    Article  PubMed  CAS  Google Scholar 

  54. Waerzeggers Y, Monfared P, Viel T, Winkeler A, Voges J, Jacobs AH (2009) Methods to monitor gene therapy with molecular imaging. Methods 48:146–160

    Article  PubMed  CAS  Google Scholar 

  55. Serganova I, Blasberg R (2005) Reporter gene imaging: potential impact on therapy. Nucl Med Biol 32:763–780

    Article  PubMed  CAS  Google Scholar 

  56. Serganova I, Ponomarev V, Blasberg R (2007) Human reporter genes: potential use in clinical studies. Nucl Med Biol 34:791–807

    Article  PubMed  CAS  Google Scholar 

  57. Jacobs A, Tjuvajev JG, Dubrovin M, Akhurst T, Balatoni J, Beattie B, Joshi R, Finn R, Larson SM, Herrlinger U, Pechan PA, Chiocca EA, Breakefield XO, Blasberg RG (2001) Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res 61:2983–2995

    PubMed  CAS  Google Scholar 

  58. Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, Kaestle C, Wagner R, Wienhard K, Heiss WD (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358:727–729

    Article  PubMed  CAS  Google Scholar 

  59. Miletic H, Fischer Y, Litwak S, Giroglou T, Waerzeggers Y, Winkeler A, Li H, Himmelreich U, Lange C, Stenzel W, Deckert M, Neumann H, Jacobs AH, von Laer D (2007) Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 15:1373–1381

    Article  PubMed  CAS  Google Scholar 

  60. Jacobs AH, Rueger MA, Winkeler A, Li H, Vollmar S, Waerzeggers Y, Rueckriem B, Kummer C, Dittmar C, Klein M, Heneka MT, Herrlinger U, Fraefel C, Graf R, Wienhard K, Heiss WD (2007) Imaging-guided gene therapy of experimental gliomas. Cancer Res 67:1706–1715

    Article  PubMed  CAS  Google Scholar 

  61. Alauddin MM, Gelovani JG (2010) Radiolabeled nucleoside analogues for PET imaging of HSV1-tk gene expression. Curr Top Med Chem 10:1617–1632

    PubMed  CAS  Google Scholar 

  62. Hingorani M, Spitzweg C, Vassaux G, Newbold K, Melcher A, Pandha H, Vile R, Harrington K (2010) The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr Cancer Drug Targets 10:242–267

    Article  PubMed  CAS  Google Scholar 

  63. De Jong M, Valkema R, Jamar F, Kvols LK, Kwekkeboom DJ, Breeman WA, Bakker WH, Smith C, Pauwels S, Krenning EP (2002) Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med 32:133–140

    Article  PubMed  Google Scholar 

  64. Shah K, Jacobs A, Breakefield XO, Weissleder R (2004) Molecular imaging of gene therapy for cancer. Gene Ther 11:1175–1187

    Article  PubMed  CAS  Google Scholar 

  65. Jacobs AH, Winkeler A, Hartung M, Slack M, Dittmar C, Kummer C, Knoess C, Galldiks N, Vollmar S, Wienhard K, Heiss WD (2003) Improved herpes simplex virus type 1 amplicon vectors for proportional coexpression of positron emission tomography marker and therapeutic genes. Hum Gene Ther 14:277–297

    Article  PubMed  CAS  Google Scholar 

  66. Bradbury MS, Hambardzumyan D, Zanzonico PB, Schwartz J, Cai S, Burnazi EM, Longo V, Larson SM, Holland EC (2008) Dynamic small-animal PET imaging of tumor proliferation with 3′-deoxy-3′-18F-fluorothymidine in a genetically engineered mouse model of high-grade gliomas. J Nucl Med 49:422–429

    Article  PubMed  Google Scholar 

  67. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  PubMed  CAS  Google Scholar 

  68. Serkova NJ (2011) Translational imaging endpoints to predict treatment response to novel targeted anticancer agents. Drug Resist 14:224–235

    Google Scholar 

  69. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409

    Article  PubMed  CAS  Google Scholar 

  70. Chen MK, Guilarte TR (2008) Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118:1–17

    Article  PubMed  CAS  Google Scholar 

  71. Vlodavsky E, Soustiel JF (2007) Immunohistochemical expression of peripheral benzodiazepine receptors in human astrocytomas and its correlation with grade of malignancy, proliferation, apoptosis and survival. J Neurooncol 81:1–7

    Article  PubMed  Google Scholar 

  72. Chelli B, Lena A, Vanacore R, Da Pozzo E, Costa B, Rossi L, Salvetti A, Scatena F, Ceruti S, Abbracchio MP, Gremigni V, Martini C (2004) Peripheral benzodiazepine receptor ligands: mitochondrial transmembrane potential depolarization and apoptosis induction in rat C6 glioma cells. Biochem Pharmacol 68:125–134

    Article  PubMed  CAS  Google Scholar 

  73. Pappata S, Cornu P, Samson Y, Prenant C, Benavides J, Scatton B, Crouzel C, Hauw JJ, Syrota A (1991) PET study of carbon-11-PK 11195 binding to peripheral type benzodiazepine sites in glioblastoma: a case report. J Nucl Med 32:1608–1610

    PubMed  CAS  Google Scholar 

  74. Chauveau F, Van Camp N, Dolle F, Kuhnast B, Hinnen F, Damont A, Boutin H, James M, Kassiou M, Tavitian B (2009) Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med 50:468–476

    Article  PubMed  CAS  Google Scholar 

  75. Van Camp N, Boisgard R, Kuhnast B, Theze B, Viel T, Gregoire MC, Chauveau F, Boutin H, Katsifis A, Dolle F, Tavitian B (2010) In vivo imaging of neuroinflammation: a comparative study between [(18)F]PBR111, [ (11)C]CLINME and [ (11)C]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imaging 37:962–972

    Article  PubMed  Google Scholar 

  76. Buck JR, McKinley ET, Hight MR, Fu A, Tang D, Smith RA, Tantawy MN, Peterson TE, Colvin D, Ansari MS, Baldwin RM, Zhao P, Guleryuz S, Manning HC (2011) Quantitative, preclinical PET of translocator protein expression in glioma using 18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline. J Nucl Med 52:107–114

    Article  PubMed  CAS  Google Scholar 

  77. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    Article  PubMed  Google Scholar 

  78. Cox D, Brennan M, Moran N (2010) Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 9:804–820

    Article  PubMed  CAS  Google Scholar 

  79. Cai W, Chen X (2006) Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anticancer Agents Med Chem 6:407–428

    Article  PubMed  CAS  Google Scholar 

  80. Chen X, Park R, Khankaldyyan V, Gonzales-Gomez I, Tohme M, Moats RA, Bading JR, Laug WE, Conti PS (2006) Longitudinal microPET imaging of brain tumor growth with F-18-labeled RGD peptide. Mol Imaging Biol 8:9–15

    Article  PubMed  CAS  Google Scholar 

  81. Battle MR, Goggi JL, Allen L, Barnett J, Morrison MS (2011) Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-Fluciclatide, an 18F-labeled {alpha}V{beta}3-Integrin and {alpha}V{beta}5-Integrin imaging agent. J Nucl Med 52(3):424–30

    Article  PubMed  CAS  Google Scholar 

  82. Veeravagu A, Liu Z, Niu G, Chen K, Jia B, Cai W, Jin C, Hsu AR, Connolly AJ, Tse V, Wang F, Chen X (2008) Integrin alphavbeta3-targeted radioimmunotherapy of glioblastoma multiforme. Clin Cancer Res 14:7330–7339

    Article  PubMed  CAS  Google Scholar 

  83. Assadian S, Aliaga A, Del Maestro RF, Evans AC, Bedell BJ (2008) FDG-PET imaging for the evaluation of antiglioma agents in a rat model. Neurooncology 10:292–299

    Google Scholar 

  84. Dorsey JF, Mintz A, Tian X, Dowling ML, Plastaras JP, Dicker DT, Kao GD, El-Deiry WS (2009) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and paclitaxel have cooperative in vivo effects against glioblastoma multiforme cells. Mol Cancer Ther 8:3285–3295

    Article  PubMed  CAS  Google Scholar 

  85. Kroeger KM, Muhammad AK, Baker GJ, Assi H, Wibowo MK, Xiong W, Yagiz K, Candolfi M, Lowenstein PR, Castro MG (2010) Gene therapy and virotherapy: novel therapeutic approaches for brain tumors. Discov Med 10:293–304

    PubMed  Google Scholar 

  86. Van Gool S, Maes W, Ardon H, Verschuere T, Van Cauter S, De Vleeschouwer S (2009) Dendritic cell therapy of high-grade gliomas. Brain Pathol 19:694–712

    Article  PubMed  Google Scholar 

  87. Rath P, Shi H, Maruniak JA, Litofsky NS, Maria BL, Kirk MD (2009) Stem cells as vectors to deliver HSV/tk gene therapy for malignant gliomas. Curr Stem Cell Res Ther 4:44–49

    Article  PubMed  CAS  Google Scholar 

  88. Rueger MA, Ameli M, Li H, Winkeler A, Rueckriem B, Vollmar S, Galldiks N, Hesselmann V, Fraefel C, Wienhard K, Heiss WD, Jacobs AH (2011) [(1)F]FLT PET for non-invasive monitoring of early response to gene therapy in experimental gliomas. Mol Imaging Biol 13:547–557

    Article  PubMed  Google Scholar 

  89. Yaghoubi SS, Jensen MC, Satyamurthy N, Budhiraja S, Paik D, Czernin J, Gambhir SS (2009) Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6:53–58

    Article  PubMed  CAS  Google Scholar 

  90. Waerzeggers Y, Klein M, Miletic H, Himmelreich U, Li H, Monfared P, Herrlinger U, Hoehn M, Coenen HH, Weller M, Winkeler A, Jacobs AH (2008) Multimodal imaging of neural progenitor cell fate in rodents. Mol Imaging 7:77–91

    PubMed  Google Scholar 

  91. Cao F, Drukker M, Lin S, Sheikh AY, Xie X, Li Z, Connolly AJ, Weissman IL, Wu JC (2007) Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 9:107–117

    Article  PubMed  CAS  Google Scholar 

  92. Füchtner F, Steinbach J, Mäding P, Johannsen B (1996) Basic hydrolysis of 18F]fluoro-1,3,4,6-tetra-O-acetyl-d-glucose in the preparation of 2-[18F]fluoro-2-deoxy-d-glucose. Appl Radiat Isot 47:61–66

    Article  Google Scholar 

  93. Hamacher K, Coenen HH, Stocklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    PubMed  CAS  Google Scholar 

  94. Yun M, Oh SJ, Ha HJ, Ryu JS, Moon DH (2003) High radiochemical yield synthesis of 3′-deoxy-3′-[18F]fluorothymidine using (5′-O-dimethoxytrityl-2′-deoxy-3′-O-nosyl-beta-D-threo pentofuranosyl)thymine and its 3-N-BOC-protected analogue as a labeling precursor. Nucl Med Biol 30:151–157

    Article  PubMed  CAS  Google Scholar 

  95. Schmitz F, Plenevaux A, Del-Fiore G, Lemaire C, Comar D, Luxen A (1995) Fast routine production of l-[11C-methyl]methionine with Al2O3KF. Appl Radiat Isot 46:893–897

    Article  CAS  Google Scholar 

  96. Schafers KP, Reader AJ, Kriens M, Knoess C, Schober O, Schafers M (2005) Performance evaluation of the 32-module quadHIDAC small-animal PET scanner. J Nucl Med 46:996–1004

    PubMed  Google Scholar 

  97. Vollmar SCJ, Sue M, Klein J, Jacobs AH, Herholz K (2004) In: Kremer K, Macho V (eds) VINCI—Volume Imaging in Neurological Research, Co-Registration and ROIs Forschung und wissenschaftliches Rechnen 2003. Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen, pp 115–131

    Google Scholar 

  98. Monfared P, Winkeler A, Klein M, Li H, Klose A, Hoesel M, Waerzeggers Y, Korsching S, Jacobs AH (2008) Noninvasive assessment of E2F-1-mediated transcriptional regulation in vivo. Cancer Res 68:5932–5940

    Article  PubMed  CAS  Google Scholar 

  99. Klose A, Waerzeggers Y, Monfared P, Vukicevic S, Kaijzel EL, Winkeler A, Wickenhauser C, Lowik CW, Jacobs AH (2011) Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas. Neoplasia 13:276–285

    PubMed  CAS  Google Scholar 

  100. Winkeler A, Sena-Esteves M, Paulis LE, Li H, Waerzeggers Y, Ruckriem B, Himmelreich U, Klein M, Monfared P, Rueger MA, Heneka M, Vollmar S, Hoehn M, Fraefel C, Graf R, Wienhard K, Heiss WD, Jacobs AH (2007) Switching on the lights for gene therapy. PLoS ONE 2:e528

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our work is supported in part by the 6th Framework EU grants EMIL (LSHC-CT-2004-503569), DiMI (LSHB-CT-2005-512146) and CliniGene NoE (LSHB-CT-2006-018933), the Innovative Medicines Initiative (IMI) grant QuIC-ConCePT (Quantitative Imaging in Cancer: Connecting Cellular Processes with Therapy), the European Strategy Forum on Research Infrastructures (ESFRI) project Euro-BioImaging and by the Bundesministerium für Bildung und Forschung (MoBiMed 01EZ0811). We thank Nina Gerigk (EIMI, Münster) for the design of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Waerzeggers, Y. et al. (2012). Positron Emission Tomography-Based Molecular Imaging. In: Martínez Murillo, R., Martínez, A. (eds) Animal Models of Brain Tumors. Neuromethods, vol 77. Humana Press, Totowa, NJ. https://doi.org/10.1007/7657_2012_36

Download citation

  • DOI: https://doi.org/10.1007/7657_2012_36

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-208-7

  • Online ISBN: 978-1-62703-209-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics