Skip to main content

High-Speed Videography of Embodied Active Sensing in the Rodent Whisker System

  • Protocol
  • First Online:
Neuronal Network Analysis

Part of the book series: Neuromethods ((NM,volume 67))

Abstract

Self-motion is often a major component of sensation. Comprehensive understanding of natural sensory processing in neural systems thus requires neural recording be coupled to high-resolution observation of behavior. The rodent vibrissa (whisker) system has several advantages as a model for network function during sensory behaviors, but only recently have inputs at the whisker level received serious study. This chapter reviews methods for capturing biological motion via high-speed videography, with emphasis on tracking rodent whiskers or other similar processes such as insect antennae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reinagel P, Zador AM (1999) Natural scene statistics at the centre of gaze. Network 10:341–350

    Article  PubMed  CAS  Google Scholar 

  2. Rucci M, Iovin R, Poletti M, Santini F (2007) Miniature eye movements enhance fine spatial detail. Nature 447:851–854

    Article  PubMed  CAS  Google Scholar 

  3. Olveczky BP, Baccus SA, Meister M (2007) Retinal adaptation to object motion. Neuron 56:689–700

    Article  PubMed  CAS  Google Scholar 

  4. Schumann F, Einhauser-Treyer W, Vockeroth J, Bartl K, Schneider E, Konig P (2008) Salient features in gaze-aligned recordings of human visual input during free exploration of natural environments. J Vis 8(12):11–17

    Article  Google Scholar 

  5. Berg DJ, Boehnke SE, Marino RA, Munoz DP, Itti L (2009) Free viewing of dynamic stimuli by humans and monkeys. J Vis 9(19):11–15

    Google Scholar 

  6. Tucker VA (2000) The deep fovea, sideways vision and spiral flight paths in raptors. J Exp Biol 203:3745–3754

    PubMed  CAS  Google Scholar 

  7. Zeil J, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:1–25

    Article  PubMed  Google Scholar 

  8. Knutsen PM, Ahissar E (2009) Orthogonal coding of object location. Trends Neurosci 32:101–109

    Article  PubMed  CAS  Google Scholar 

  9. Hyson RL (2005) The analysis of interaural time differences in the chick brain stem. Physiol Behav 86:297–305

    Article  PubMed  CAS  Google Scholar 

  10. Christensen-Dalsgaard J, Manley GA (2005) Directionality of the lizard ear. J Exp Biol 208:1209–1217

    Article  PubMed  Google Scholar 

  11. Lederman SJ, Klatzky RL (1990) Haptic classification of common objects: knowledge-driven exploration. Cogn Psychol 22:421–459

    Article  PubMed  CAS  Google Scholar 

  12. Klatzky RL, Pellegrino J, McCloskey BP, Lederman SJ (1993) Cognitive representations of functional interactions with objects. Mem Cognit 21:294–303

    Article  PubMed  CAS  Google Scholar 

  13. Connor CE, Hsiao SS, Phillips JR, Johnson KO (1990) Tactile roughness: neural codes that account for psychophysical magnitude estimates. J Neurosci 10:3823–3836

    PubMed  CAS  Google Scholar 

  14. DiCarlo JJ, Johnson KO (1999) Velocity invariance of receptive field structure in somatosensory cortical area 3b of the alert monkey. J Neurosci 19:401–419

    PubMed  CAS  Google Scholar 

  15. Petersen CC (2007) The functional organization of the barrel cortex. Neuron 56:339–355

    Article  PubMed  CAS  Google Scholar 

  16. Guic-Robles E, Valdivieso C, Guajardo G (1989) Rats can learn a roughness discrimination using only their vibrissal system. Behav Brain Res 31:285–289

    Article  PubMed  CAS  Google Scholar 

  17. Carvell GE, Simons DJ (1995) Task- and subject-related differences in sensorimotor behavior during active touch. Somatosens Mot Res 12:1–9

    Article  PubMed  CAS  Google Scholar 

  18. Krupa DJ, Matell MS, Brisben AJ, Oliveira LM, Nicolelis MA (2001) Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J Neurosci 21:5752–5763

    PubMed  CAS  Google Scholar 

  19. Knutsen PM, Pietr M, Ahissar E (2006) Haptic object localization in the vibrissal system: behavior and performance. J Neurosci 26:8451–8464

    Article  PubMed  CAS  Google Scholar 

  20. Towal RB, Hartmann MJ (2006) Right-left asymmetries in the whisking behavior of rats anticipate head movements. J Neurosci 26:8838–8846

    Article  PubMed  CAS  Google Scholar 

  21. Mitchinson B, Martin CJ, Grant RA, Prescott TJ (2007) Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc Biol Sci 274:1035–1041

    Article  PubMed  Google Scholar 

  22. Stuttgen MC, Ruter J, Schwarz C (2006) Two psychophysical channels of whisker deflection in rats align with two neuronal classes of primary afferents. J Neurosci 26:7933–7941

    Article  PubMed  Google Scholar 

  23. von Heimendahl M, Itskov PM, Arabzadeh E, Diamond ME (2007) Neuronal activity in rat barrel cortex underlying texture discrimination. PLoS Biol 5:e305

    Article  Google Scholar 

  24. Towal RB, Hartmann MJ (2008) Variability in velocity profiles during free-air whisking behavior of unrestrained rats. J Neurophysiol 100:740–752

    Article  PubMed  Google Scholar 

  25. Ritt JT, Andermann ML, Moore CI (2008) Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron 57:599–613

    Article  PubMed  CAS  Google Scholar 

  26. Grant RA, Mitchinson B, Fox CW, Prescott TJ (2009) Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. J Neurophysiol 101:862–874

    Article  PubMed  Google Scholar 

  27. Hill DN, Bermejo R, Zeigler HP, Kleinfeld D (2008) Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity. J Neurosci 28:3438–3455

    Article  PubMed  CAS  Google Scholar 

  28. O’Connor DH, Huber D, Svoboda K (2009) Reverse engineering the mouse brain. Nature 461:923–929

    Article  PubMed  Google Scholar 

  29. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    Article  PubMed  CAS  Google Scholar 

  30. Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2648

    PubMed  CAS  Google Scholar 

  31. Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449:103–119

    Article  PubMed  Google Scholar 

  32. Dorfl J (1982) The musculature of the mystacial vibrissae of the white mouse. J Anat 135:147–154

    PubMed  CAS  Google Scholar 

  33. Knutsen PM, Biess A, Ahissar E (2008) Vibrissal kinematics in 3D: tight coupling of azimuth, elevation, and torsion across different whisking modes. Neuron 59:35–42

    Article  PubMed  CAS  Google Scholar 

  34. Neimark MA, Andermann ML, Hopfield JJ, Moore CI (2003) Vibrissa resonance as a transduction mechanism for tactile encoding. J Neurosci 23:6499–6509

    PubMed  CAS  Google Scholar 

  35. Hartmann MJ, Johnson NJ, Towal RB, Assad C (2003) Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neurosci 23:6510–6519

    PubMed  CAS  Google Scholar 

  36. Mehta SB, Kleinfeld D (2004) Frisking the whiskers: patterned sensory input in the rat vibrissa system. Neuron 41:181–184

    Article  PubMed  CAS  Google Scholar 

  37. Arabzadeh E, Zorzin E, Diamond ME (2005) Neuronal encoding of texture in the whisker sensory pathway. PLoS Biol 3:e17

    Article  PubMed  Google Scholar 

  38. Hipp J, Arabzadeh E, Zorzin E, Conradt J, Kayser C, Diamond ME, Konig P (2006) Texture signals in whisker vibrations. J Neurophysiol 95:1792–1799

    Article  PubMed  Google Scholar 

  39. Wolfe J, Hill DN, Pahlavan S, Drew PJ, Kleinfeld D, Feldman DE (2008) Texture coding in the rat whisker system: slip–stick versus differential resonance. PLoS Biol 6:e215

    Article  PubMed  Google Scholar 

  40. Jadhav SP, Wolfe J, Feldman DE (2009) Sparse temporal coding of elementary tactile features during active whisker sensation. Nat Neurosci 12:792–800

    Article  PubMed  CAS  Google Scholar 

  41. Lottem E, Azouz R (2008) Dynamic translation of surface coarseness into whisker vibrations. J Neurophysiol 100:2852–2865

    Article  PubMed  Google Scholar 

  42. Denny M (2004) Stick–slip motion: an important example of self-excited oscillation. Eur J Phys 25:311–322

    Article  Google Scholar 

  43. O’Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, Svoboda K (2010) Vibrissa-based object localization in head-fixed mice. J Neurosci 30:1947–1967

    Article  PubMed  Google Scholar 

  44. Brecht M, Preilowski B, Merzenich MM (1997) Functional architecture of the mystacial vibrissae. Behav Brain Res 84:81–97

    Article  PubMed  CAS  Google Scholar 

  45. Szwed M, Bagdasarian K, Ahissar E (2003) Encoding of vibrissal active touch. Neuron 40:621–630

    Article  PubMed  CAS  Google Scholar 

  46. Solomon JH, Hartmann MJ (2006) Biomechanics: robotic whiskers used to sense features. Nature 443:525

    Article  PubMed  CAS  Google Scholar 

  47. Stuttgen MC, Kullmann S, Schwarz C (2008) Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation. J Neurophysiol 100:1879–1884

    Article  PubMed  Google Scholar 

  48. Gerdjikov TV, Bergner CG, Stuttgen MC, Waiblinger C, Schwarz C (2010) Discrimination of vibrotactile stimuli in the rat whisker system: behavior and neurometrics. Neuron 65:530–540

    Article  PubMed  CAS  Google Scholar 

  49. Celikel T, Sakmann B (2007) Sensory integration across space and in time for decision making in the somatosensory system of rodents. Proc Natl Acad Sci USA 104:1395–1400

    Article  PubMed  CAS  Google Scholar 

  50. Hecht E (2001) Optics. Addison Wesley

    Google Scholar 

  51. Knutsen PM, Derdikman D, Ahissar E (2005) Tracking whisker and head movements in unrestrained behaving rodents. J Neurophysiol 93:2294–2301

    Article  PubMed  Google Scholar 

  52. Voigts J, Sakmann B, Celikel T (2008) Unsupervised whisker tracking in unrestrained behaving animals. J Neurophysiol 100: 504–515

    Article  PubMed  Google Scholar 

  53. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press

    Google Scholar 

  54. Brecht M, Schneider M, Sakmann B, Margrie TW (2004) Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427:704–710

    Article  PubMed  CAS  Google Scholar 

  55. Perkon I, Kosir A, Itskov PM, Tasic J, Diamond ME (2011) Unsupervised quantification of whisking and head movement in freely moving rodents. J Neurophysiol 105:1950–1962

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ritt, J.T. (2011). High-Speed Videography of Embodied Active Sensing in the Rodent Whisker System. In: Fellin, T., Halassa, M. (eds) Neuronal Network Analysis. Neuromethods, vol 67. Humana Press. https://doi.org/10.1007/7657_2011_9

Download citation

  • DOI: https://doi.org/10.1007/7657_2011_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-632-6

  • Online ISBN: 978-1-61779-633-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics