Skip to main content

Fast Perfusion Methods for the Study of Ligand-Gated Ion Channels

  • Protocol
  • First Online:
Neuronal Network Analysis

Part of the book series: Neuromethods ((NM,volume 67))

Abstract

The elementary information transfer between two neurons is represented by the generation of a synaptic current in the post-synaptic element due to the activation of post-synaptic receptors by a neurotransmitter quantum. The duration and the amplitude of such signals are largely determined by the properties of post-synaptic receptors and the profile of neurotransmitter concentration sensed by post-synaptic receptors. To date, the knowledge about the properties of post-synaptic receptors activated in synaptic conditions has been limited by the difficulty to control and reproduce the synaptic neurotransmitter exposures. In this chapter, it is shown how to build and optimize devices capable to deliver neurotransmitter pulses approaching those occurring at the synapse. In addition, the role of the neurotransmitter concentration profile at the synaptic cleft in shaping post-synaptic currents is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56:33–42

    Article  PubMed  CAS  Google Scholar 

  2. Karayannis T, Elfant D, Huerta-Ocampo I et al (2010) Slow GABA transient and receptor desensitization shape synaptic responses evoked by hippocampal neurogliaform cells. J Neurosci 30:9898–9909

    Article  PubMed  CAS  Google Scholar 

  3. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  PubMed  CAS  Google Scholar 

  4. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    Article  PubMed  CAS  Google Scholar 

  5. Klausberger T (2009) GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur J Neurosci 30:947–957

    Article  PubMed  Google Scholar 

  6. Clements JD, Lester RA, Tong G et al (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501

    Article  PubMed  CAS  Google Scholar 

  7. Mozrzymas JW, Zarnowska ED, Pytel M et al (2003) Modulation of GABA(A) receptors by hydrogen ions reveals synaptic GABA transient and a crucial role of the desensitization process. J Neurosci 23:7981–7992

    PubMed  CAS  Google Scholar 

  8. Franke C, Hatt H, Dudel J (1987) Liquid filament switch for ultra-fast exchanges of solutions at excised patches of synaptic membrane of crayfish muscle. Neurosci Lett 77(2):199–204

    Article  PubMed  CAS  Google Scholar 

  9. Jonas P (1995) Fast application of agonists to isolated membrane patches. Single-channel recording. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum press, New York, pp 231–243

    Google Scholar 

  10. Popescu G, Robert A, Howe JR et al (2004) Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature 430:790–793

    Article  PubMed  CAS  Google Scholar 

  11. He L, Wu XS, Mohan R et al (2006) Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444:102–105

    Article  PubMed  CAS  Google Scholar 

  12. Barberis A, Sachidhanandam S, Mulle C (2008) GluR6/KA2 kainate receptors mediate slow-deactivating currents. J Neurosci 28:6402–6406

    Article  PubMed  CAS  Google Scholar 

  13. Mozrzymas JW, Barberis A, Mercik K et al (2003) Binding sites, singly bound states, and conformation coupling shape GABA-evoked currents. J Neurophysiol 89:871–883

    Article  PubMed  CAS  Google Scholar 

  14. Lester RA, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12:635–643

    PubMed  CAS  Google Scholar 

  15. Jones MV, Westbrook GL (1995) Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15:181–191

    Article  PubMed  CAS  Google Scholar 

  16. Partin KM, Patneau DK, Winters CA et al (1993) Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11:1069–1082

    Article  PubMed  CAS  Google Scholar 

  17. Sachidhanandam S, Blanchet C, Jeantet Y et al (2009) Kainate receptors act as conditional amplifiers of spike transmission at hippocampal mossy fiber synapses. J Neurosci 29:5000–5008

    Article  PubMed  CAS  Google Scholar 

  18. Mott DD, Rojas A, Fisher JL et al (2010) Subunit-specific desensitization of heteromeric kainate receptors. J Physiol 588:683–700

    Article  PubMed  CAS  Google Scholar 

  19. Mozrzymas JW, Barberis A, Vicini S (2007) GABAergic currents in RT and VB thalamic nuclei follow kinetic pattern of alpha3- and alpha1-subunit-containing GABAA receptors. Eur J Neurosci 26:657–665

    Article  PubMed  Google Scholar 

  20. Trigo FF, Papageorgiou G, Corrie JE et al (2009) Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ. J Neurosci Methods 181:159–169

    Article  PubMed  CAS  Google Scholar 

  21. Matsuzaki M, Hayama T, Kasai H et al (2010) Two-photon uncaging of gamma-aminobutyric acid in intact brain tissue. Nat Chem Biol 6:255–257

    Article  PubMed  CAS  Google Scholar 

  22. Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4: 1086–1092

    Article  PubMed  CAS  Google Scholar 

  23. DiGregorio DA, Rothman JS, Nielsen TA et al (2007) Desensitization properties of AMPA receptors at the cerebellar mossy fiber granule cell synapse. J Neurosci 27:8344–8357

    Article  PubMed  CAS  Google Scholar 

  24. Heine M, Groc L, Frischknecht R et al (2008) Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320:201–205

    Article  PubMed  CAS  Google Scholar 

  25. Gorostiza P, Isacoff EY (2008) Optical switches for remote and noninvasive control of cell signaling. Science 322:395–399

    Article  PubMed  CAS  Google Scholar 

  26. Gorostiza P, Isacoff EY (2008) Nanoengineering ion channels for optical control. Physiology (Bethesda) 23:238–247

    Article  Google Scholar 

  27. Numano R, Szobota S, Lau AY et al (2009) Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proc Natl Acad Sci U S A 106:6814–6819

    Article  PubMed  CAS  Google Scholar 

  28. Sachs F (1999) Practical limits on the maximal speed of solution exchange for patch clamp experiments. Biophys J 77:682–690

    Article  PubMed  CAS  Google Scholar 

  29. Carslaw H (1959) Conduction of heat in solids. Clarendon, Oxford

    Google Scholar 

  30. Stilson S, McClellan A, Devasia S (2001) High-speed solution switching using piezo-based micropositioning stages. IEEE Trans Biomed Eng 48:806–814

    Article  PubMed  CAS  Google Scholar 

  31. Moffatt L, Hume RI (2007) Responses of rat P2X2 receptors to ultrashort pulses of ATP provide insights into ATP binding and channel gating. J Gen Physiol 130:183–201

    Article  PubMed  CAS  Google Scholar 

  32. Dravid SM, Prakash A, Traynelis SF (2008) Activation of recombinant NR1/NR2C NMDA receptors. J Physiol 586:4425–4439

    Article  PubMed  CAS  Google Scholar 

  33. Pitt SJ, Sivilotti LG, Beato M (2008) High intracellular chloride slows the decay of glycinergic currents. J Neurosci 28:11454–11467

    Article  PubMed  CAS  Google Scholar 

  34. Barberis A, Mozrzymas JW, Ortinski PI et al (2007) Desensitization and binding properties determine distinct alpha1beta2gamma2 and alpha3beta2gamma2 GABA(A) receptor-channel kinetic behavior. Eur J Neurosci 25:2726–2740

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I wish to thank Enrica M. Petrini and Jerzy W. Mozrzymas for critical reading of the manuscript. This work was supported by the Fet Proactive7 grant to Fabio Benfenati (Italian Institute of Technology, Neuroscience and Brain Technology, Italy) and AB.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barberis, A. (2011). Fast Perfusion Methods for the Study of Ligand-Gated Ion Channels. In: Fellin, T., Halassa, M. (eds) Neuronal Network Analysis. Neuromethods, vol 67. Humana Press. https://doi.org/10.1007/7657_2011_20

Download citation

  • DOI: https://doi.org/10.1007/7657_2011_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-632-6

  • Online ISBN: 978-1-61779-633-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics