Skip to main content

Morpho-Functional Mapping of Cortical Networks in Brain Slice Preparations Using Paired Electrophysiological Recordings

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 67))

Abstract

The study of neuronal microcircuits with paired electrophysiological recordings from synaptically coupled neurons in brain slices has revealed a large variety of neuronal cell types with highly distinct and connection-specific characteristics of synaptic transmission. In combination with simultaneous biocytin fillings paired recordings permit correlated structural and functional analyses of pre- and post-synaptic neurons, including technically challenging approaches such as a quantal analysis of identified unitary synaptic connections. Here, we present the technical procedures for successful paired recordings, methods to obtain an optimal neuronal morphology, the working principle for neuronal reconstructions, and the basis and caveats in estimating neuronal connectivity from paired recording data. The paired recording technique will remain an important approach in the analysis of neuronal connectivity in the brain, in particular with respect to the finer details of synaptic transmission, since it allows the morphological and functional characterisation of both pre- and post-synaptic neuronal cell types which are not possible using other methods to study neuronal connectivity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Beierlein M, Gibson JR, Connors BW (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 3:904–910

    Article  PubMed  CAS  Google Scholar 

  2. Hughes GM, Tauc L (1968) A direct synaptic connexion between the left and right giant cells in Aplysia. J Physiol 197:511–527

    PubMed  CAS  Google Scholar 

  3. Korn H, Triller A, Mallet A et al (1981) Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons. Science 213:898–901

    Article  PubMed  CAS  Google Scholar 

  4. Faber DS, Korn H (1980) Single-shot channel activation accounts for duration of inhibitory postsynaptic potentials in a central neuron. Science 208:612–615

    Article  PubMed  CAS  Google Scholar 

  5. Miles R (1990) Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. J Physiol 428:61–77

    PubMed  CAS  Google Scholar 

  6. Thomson AM, West DC (1993) Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex. Neuroscience 54:329–346

    Article  PubMed  CAS  Google Scholar 

  7. Bolshakov VY, Siegelbaum SA (1995) Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269:1730–1734

    Article  PubMed  CAS  Google Scholar 

  8. Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423:511–518

    Article  PubMed  CAS  Google Scholar 

  9. Dodt HU, Zieglgänsberger W (1990) Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res 537:333–336

    Article  PubMed  CAS  Google Scholar 

  10. MacVicar BA (1984) Infrared video microscopy to visualize neurons in the in vitro brain slice preparation. J Neurosci Methods 12:133–139

    Article  PubMed  CAS  Google Scholar 

  11. Silver RA, Lübke J, Sakmann B, Feldmeyer D (2003) High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302:1981–1984

    Article  PubMed  CAS  Google Scholar 

  12. Biro AA, Holderith NB, Nusser Z (2005) Quantal size is independent of the release probability at hippocampal excitatory synapses. J Neurosci 25:223–232

    Article  PubMed  CAS  Google Scholar 

  13. Gulyas AI, Miles R, Sik A, Toth K, Tamamaki N, Freund TF (1993) Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366:683–687

    Article  PubMed  CAS  Google Scholar 

  14. Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312:1622–1627

    Article  PubMed  CAS  Google Scholar 

  15. Crochet S, Chauvette S, Boucetta S et al (2005) Modulation of synaptic transmission in neocortex by network activities. Eur J Neurosci 21:1030–1044

    Article  PubMed  Google Scholar 

  16. Matsumura M, Chen D, Sawaguchi T et al (1996) Synaptic interactions between primate precentral cortex neurons revealed by spike-triggered averaging of intracellular membrane potentials in vivo. J Neurosci 16:7757–7767

    PubMed  CAS  Google Scholar 

  17. Petreanu L, Huber D, Sobczyk A et al (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668

    Article  PubMed  CAS  Google Scholar 

  18. Bureau I, von Saint PF, Svoboda K (2006) Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol 4:e382

    Article  PubMed  Google Scholar 

  19. Shepherd GM, Svoboda K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J Neurosci 25:5670–5679

    Article  PubMed  CAS  Google Scholar 

  20. Schubert D, Kötter R, Luhmann HJ et al (2006) Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer Va in the primary somatosensory cortex. Cereb Cortex 16:223–236

    Article  PubMed  CAS  Google Scholar 

  21. Schubert D, Kötter R, Zilles K et al (2003) Cell type-specific circuits of cortical layer IV spiny neurons. J Neurosci 23:2961–2970

    PubMed  CAS  Google Scholar 

  22. Schubert D, Staiger JF, Cho N et al (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21:3580–3592

    PubMed  CAS  Google Scholar 

  23. Yoshimura Y, Callaway EM (2005) Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat Neurosci 8:1552–1559

    Article  PubMed  CAS  Google Scholar 

  24. Yoshimura Y, Dantzker JL, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868–873

    Article  PubMed  CAS  Google Scholar 

  25. Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci 3:701–707

    Article  PubMed  CAS  Google Scholar 

  26. Peron S, Svoboda K (2011) From cudgel to scalpel: toward precise neural control with optogenetics. Nat Methods 8:30–34

    Article  PubMed  CAS  Google Scholar 

  27. Petreanu L, Mao T, Sternson SM et al (2009) The subcellular organization of neocortical excitatory connections. Nature 457:1142–1145

    Article  PubMed  CAS  Google Scholar 

  28. Scanziani M, Häusser M (2009) Electrophysiology in the age of light. Nature 461:930–939

    Article  PubMed  CAS  Google Scholar 

  29. Adesnik H, Scanziani M (2010) Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464:1155–1160

    Article  PubMed  CAS  Google Scholar 

  30. Molnár Z, Cheung AF (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55:105–115

    Article  PubMed  Google Scholar 

  31. Groh A, Meyer HS, Schmidt EF et al (2010) Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb Cortex 20:826–836

    Article  PubMed  Google Scholar 

  32. Doyle JP, Dougherty JD, Heiman M et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–762

    Article  PubMed  CAS  Google Scholar 

  33. Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457:1133–1136

    Article  PubMed  CAS  Google Scholar 

  34. Feldmeyer D, Egger V, Lübke J, Sakmann B (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex. J Physiol 521(Pt 1):169–190

    Article  PubMed  CAS  Google Scholar 

  35. Markram H, Lübke J, Frotscher M et al (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500(Pt 2):409–440

    PubMed  CAS  Google Scholar 

  36. Deans MR, Gibson JR, Sellitto C et al (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31:477–485

    Article  PubMed  CAS  Google Scholar 

  37. Galarreta M, Hestrin S (2002) Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc Natl Acad Sci U S A 99:12438–12443

    Article  PubMed  CAS  Google Scholar 

  38. Galarreta M, Hestrin S (2001) Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2:425–433

    Article  PubMed  CAS  Google Scholar 

  39. Deuchars J, West DC, Thomson AM (1994) Relationships between morphology and physiology of pyramid-pyramid single axon connections in rat neocortex in vitro. J Physiol 478(Pt 3):423–435

    PubMed  Google Scholar 

  40. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    PubMed  CAS  Google Scholar 

  41. Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207:642–643

    Article  PubMed  CAS  Google Scholar 

  42. Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287

    Article  PubMed  CAS  Google Scholar 

  43. Tamás G, Buhl EH, Somogyi P (1997) Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. J Physiol 500(Pt 3):715–738

    PubMed  Google Scholar 

  44. Tamás G, Buhl EH, Lörincz A et al (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3:366–371

    Article  PubMed  Google Scholar 

  45. Oertner TG, Sabatini BL, Nimchinsky EA et al (2002) Facilitation at single synapses probed with optical quantal analysis. Nat Neurosci 5:657–664

    PubMed  CAS  Google Scholar 

  46. Koester HJ, Johnston D (2005) Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308:863–866

    Article  PubMed  CAS  Google Scholar 

  47. Peters A (1979) Thalamic input to the cerebral cortex. Trends Neurosci 2:183–185

    Article  Google Scholar 

  48. White EL (1979) Thalamocortical synaptic relations: a review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex. Brain Res 180:275–311

    PubMed  CAS  Google Scholar 

  49. Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin, Heidelberg, New York, p 249

    Google Scholar 

  50. White EL (2007) Reflections on the specificity of synaptic connections. Brain Res Rev 55:422–429

    Article  PubMed  Google Scholar 

  51. Stepanyants A, Hirsch JA, Martinez LM et al (2008) Local potential connectivity in cat primary visual cortex. Cereb Cortex 18:13–28

    Article  PubMed  Google Scholar 

  52. Shepherd GM, Stepanyants A, Bureau I et al (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8:782–790

    Article  PubMed  CAS  Google Scholar 

  53. Stepanyants A, Chklovskii DB (2005) Neurogeometry and potential synaptic connectivity. Trends Neurosci 28:387–394

    Article  PubMed  CAS  Google Scholar 

  54. Helmstaedter MN, Feldmeyer D (2010) Axons predict neuronal connectivity within and between cortical columns and serve as primary classifiers of interneurons in a cortical column. In: Feldmeyer D, Lübke JHR (eds) New aspects of axonal structure and function, 1st edn. Springer Science + Business Media, New York, Dordrecht, Heidelberg, London, pp 141–155

    Chapter  Google Scholar 

  55. Eder M, Zieglgänsberger W, Dodt HU (2002) Neocortical long-term potentiation and long-term depression: site of expression investigated by infrared-guided laser stimulation. J Neurosci 22:7558–7568

    PubMed  CAS  Google Scholar 

  56. Dodt HU, Frick A, Kampe K et al (1998) NMDA and AMPA receptors on neocortical neurons are differentially distributed. Eur J Neurosci 10:3351–3357

    Article  PubMed  CAS  Google Scholar 

  57. Moyer JD, Brown TH (2007) Visually guided patch-clamp recordings in brain slices. In: Walz W (ed) Patch clamp analysis advanced techniques. Humana Press, Totowa, NJ, USA

    Google Scholar 

  58. Debanne D, Boudkkazi S, Campanac E et al (2008) Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices. Nat Protoc 3:1559–1568

    Article  PubMed  CAS  Google Scholar 

  59. Davie JT, Kole MH, Letzkus JJ et al (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235–1247

    Article  PubMed  CAS  Google Scholar 

  60. Qi G, Feldmeyer D (2010) Cell type-specific excitatory synaptic connections from layer 4 to layer 6A in rat barrel cortex. Acta Physiol (Oxf) 198:90–90

    Google Scholar 

  61. Helmstaedter M, Staiger JF, Sakmann B et al (2008) Efficient recruitment of layer 2/3 interneurons by layer 4 input in single columns of rat somatosensory cortex. J Neurosci 28:8273–8284

    Article  PubMed  CAS  Google Scholar 

  62. Feldmeyer D, Roth A, Sakmann B (2005) Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. J Neurosci 25:3423–3431

    Article  PubMed  CAS  Google Scholar 

  63. Feldmeyer D, Lübke J, Silver RA et al (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol 538:803–822

    Article  PubMed  CAS  Google Scholar 

  64. Radnikow G, Lübke JR, Feldmeyer D (2010) Developmental changes in synaptic transmission between layer 4 spiny neurons in rat barrel cortex. Acta Physiol (Oxf) 198:179–179

    Article  Google Scholar 

  65. Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods 25:1–11

    Article  PubMed  CAS  Google Scholar 

  66. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    Article  PubMed  CAS  Google Scholar 

  67. Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40:1457–1463

    Article  PubMed  CAS  Google Scholar 

  68. Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775

    Article  PubMed  CAS  Google Scholar 

  69. Lübke J, Roth A, Feldmeyer D et al (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb Cortex 13:1051–1063

    Article  PubMed  Google Scholar 

  70. Lübke J, Egger V, Sakmann B et al (2000) Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J Neurosci 20:5300–5311

    PubMed  Google Scholar 

  71. Marx M, Günter RH, Hucko W et al. (2011) An improved protocol for biocytin labeling and neuronal reconstruction. Nat Protoc (in press).

    Google Scholar 

  72. Osborn M, Weber K (1982) Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin-containing structures. Methods Cell Biol 24:97–132

    Article  PubMed  CAS  Google Scholar 

  73. Osborn M, Born T, Koitsch HJ et al (1978) Stereo immunofluorescence microscopy: I. Three-dimensional arrangement of microfilaments, microtubules and tonofilaments. Cell 14:477–488

    Article  PubMed  CAS  Google Scholar 

  74. Rodriguez J, Deinhardt F (1960) Preparation of a semipermanent mounting medium for fluorescent antibody studies. Virology 12:316–317

    Article  PubMed  CAS  Google Scholar 

  75. Longin A, Souchier C, Ffrench M et al (1993) Comparison of anti-fading agents used in fluorescence microscopy: image analysis and laser confocal microscopy study. J Histochem Cytochem 41:1833–1840

    Article  PubMed  CAS  Google Scholar 

  76. Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242

    Article  PubMed  CAS  Google Scholar 

  77. Land PW, Simons DJ (1985) Cytochrome oxidase staining in the rat SmI barrel cortex. J Comp Neurol 238:225–235

    Article  PubMed  CAS  Google Scholar 

  78. Wong-Riley MT, Welt C (1980) Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc Natl Acad Sci USA 77:2333–2337

    Article  PubMed  CAS  Google Scholar 

  79. Egger V, Nevian T, Bruno RM (2008) Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex. Cereb Cortex 18:876–889

    Article  PubMed  Google Scholar 

  80. Frick A, Feldmeyer D, Helmstaedter M et al (2008) Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. Cereb Cortex 18:397–406

    Article  PubMed  Google Scholar 

  81. Feldmeyer D, Lübke J, Sakmann B (2006) Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol 575:583–602

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Werner Hucko for his excellent technical assistance and the Helmholtz Alliance for Systems Biology and the DFG Research Group ‘Barrel Cortex Function’ for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Radnikow, G., Günter, R.H., Marx, M., Feldmeyer, D. (2011). Morpho-Functional Mapping of Cortical Networks in Brain Slice Preparations Using Paired Electrophysiological Recordings. In: Fellin, T., Halassa, M. (eds) Neuronal Network Analysis. Neuromethods, vol 67. Humana Press. https://doi.org/10.1007/7657_2011_14

Download citation

  • DOI: https://doi.org/10.1007/7657_2011_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-632-6

  • Online ISBN: 978-1-61779-633-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics