Skip to main content

Candidate Drugs for the Potential Treatment of Coronavirus Diseases

  • Protocol
  • First Online:
In Silico Modeling of Drugs Against Coronaviruses

Abstract

Coronaviruses (CoVs) infect humans and can cause lung, kidney, heart, brain, and intestinal infections that can range from mild to lethal type. Especially, β-coronaviruses causing severe-acute respiratory syndrome (SARS)-CoV-1, the Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2 (2019-nCoV) are dangerous and can easily be transmitted from human to human. The outbreak of coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2 infection, has become a global crisis. In this situation, the development of anticoronaviral therapies is highly warranted. However, to date, no approved vaccines or drugs against CoV infections are available. In this chapter, we have made an effort to discuss molecular level targets for the development of therapies against coronavirus diseases, SARS-CoV-1, MERS-CoV, and SARS-CoV-2, targeting CoV replication and its life cycle. These targets include the spike glycoprotein and its host-receptors for viral entry, proteases that are essential for cleaving polyproteins to produce functional proteins, and RNA-dependent RNA polymerase for viral RNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pillaiyar T, Meenakshisundaram S, Manickam M (2020) Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 25(4):668–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pillaiyar T, Manickam M, Namasivayam V et al (2016) An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J Med Chem 59:6595–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pillaiyar T, Manickam M, Jung SH (2015) Middle East respiratory syndrome-coronavirus (MERS-CoV): an updated overview and pharmacotherapeutics. Med Chem 5(8):361–372

    Google Scholar 

  4. de Groot RJ et al (2011) Family coronaviridae. In: King AMQ (ed) Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, Oxford, pp 806–828

    Google Scholar 

  5. Geller C, Varbanov M, Duval RE (2012) Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses 4(11):3044–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamre D, Procknow JJ (1966) A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 121(1):190–193

    Article  CAS  PubMed  Google Scholar 

  7. McIntosh K, Dees JH, Becker WB et al (1967) Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci U S A 57(4):933–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. WHO (2003) Communicable disease surveillance and response. World Health Organization, Geneva. http://www.who.int/csr/sars/archive/2003_05_07a/en, http://www.who.int/csr/sars/country/en/country2003_08_15.pdf

    Google Scholar 

  9. WHO (2014) Middle East respiratory syndrome coronavirus (MERS-CoV) summary and literature update-as of 20 January. WHO, Geneva

    Google Scholar 

  10. Pillaiyar T, Wendt LL, Manickam M et al (2020) The recent outbreaks of human coronaviruses: a medicinal chemistry perspective. Med Res Rev. https://doi.org/10.1002/med.21724

  11. Su S, Wong G, Shi W et al (2016) Epidemiology, genetic recombination and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Forni D, Cagliani R, Clerici M, Sironi M (2017) Molecular evolution of human coronavirus genomes. Trends Microbiol 25(1):35–48

    Article  CAS  PubMed  Google Scholar 

  13. Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17(3):181–192

    Article  CAS  PubMed  Google Scholar 

  14. Zhu N, Zhang D, Wang W et al (2020) A novel coronavirus from patients with pneumonia in China 2019. N Engl J Med 382:727–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fehr AR, Perlman S (2015) Coronaviruses: an overview of their replication and pathogenesis. In: Coronaviruses. Methods in molecular biology, vol 1282. Humana Press, New York, NY, pp 1–23

    Google Scholar 

  16. Liu C, Zhou Q, Li Y et al (2020) Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci 6:315–331

    Article  CAS  PubMed  Google Scholar 

  17. Kai H, Kai M (2020) Interactions of coronaviruses with ACE2, angiotensin-II, and RAS inhibitors-lessons from available evidence and insights into COVID-19. Hypertens Res 43:648. https://doi.org/10.1038/s41440-020-0455-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Doremalen N, Miazgowicz KL, Milne-Price S et al (2014) Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol 88(16):9220–9232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yeager CL, Ashmun RA, Williams RK et al (1992) Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357(6377):420–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang X, Dong W, Milewska A et al (2015) Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J Virol 89(14):7202–7213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li G, Fan Y, Lai Y et al (2020) Coronavirus infections and immune responses. J Med Virol 92(4):424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y (2012) Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol 42(2):145–153

    Article  CAS  PubMed  Google Scholar 

  23. Savarino A, Di L, Trani DI, Cauda R, Cassone A (2006) New insights into the antiviral effects of chloroquine. Lancet Infect Dis 6(2):67–69

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y et al (2013) Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res 32(2):300–302

    Article  CAS  Google Scholar 

  25. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin BE, Ksiazek TG et al (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Al-Bari MAA (2017) Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 5(1):e00293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Keyaerts E, Vijge L, Maes P, Neyts J, Van Ranst M (2004) In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 323(1):264–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yao X, Ye F, Zhang M, Cui C, Huang B, Nui P et al (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 71:732. https://doi.org/10.1093/cid/ciaa237

    Article  CAS  PubMed  Google Scholar 

  29. Gao J, Tian Z, Yang X (2020) Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 14(1):72

    Article  CAS  PubMed  Google Scholar 

  30. Stahlmann R, Lode H (2020) Medication for COVID-19 – an overview of approaches currently under study. Dtsch Arztebl Int 117(13):213–219

    PubMed  PubMed Central  Google Scholar 

  31. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M et al (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 56:105949. https://doi.org/10.1016/j.ijantimicag.2020.105949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D et al (2020) Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. MedRXiv. https://doi.org/10.1101/2020.03.22.20040758

  33. Zhang Q, Wang Y, Qi C, Shen L, Li J (2020) Clinical trial analysis of 2019-nCoVtherapy registered in China. J Med Virol 92:540. https://doi.org/10.1002/jmv.25733

    Article  CAS  PubMed  Google Scholar 

  34. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S (2020) A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 57:279. https://doi.org/10.1016/j.jcrc.2020.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chan KW, Wong VT, Tang SCW (2020) COVID-19: an update on the epidemiological, clinical preventive and therapeutic evidence and guidelines of integrative Chinese-Western medicine for the management of 2019 novel coronavirus disease. Am J Chin Med 48:737–762. https://doi.org/10.1142/S0192415X20500378

    Article  CAS  PubMed  Google Scholar 

  36. ClinicalTrials gov (2020) NCT04303507

    Google Scholar 

  37. ClinicalTrials gov (2020) NCT04303299

    Google Scholar 

  38. Blaising J, Polyak SJ, Pécheur EI (2014) Arbidol as a broad spectrum antiviral: an update. Antiviral Res 107:84–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leneva IA, Russell RJ, Boriskin YS, Hay AJ Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol. Antiviral Res 81(2):132–140

    Google Scholar 

  40. Boriskin YS, Pécheur EI, Polyak SJ Arbidol: a broad-spectrum antiviral that inhibits acute and chronic HCV infection. Virol J 3:56

    Google Scholar 

  41. Blaising J, Lévy PL, Polyak SJ, Stanifer M, Boulant S, Pécheur EI (2013) Arbidol inhibits viral entry by interfering with clathrin-dependent trafficking. Antiviral Res 100(1):215–219

    Article  CAS  PubMed  Google Scholar 

  42. Pécheur EI, Borisevich V, Halfmann P, Morrey JD, Smee DF, Prichard M et al (2016) The synthetic antiviral drug arbidol inhibits globally prevalent pathogenic viruses. J Virol 90(6):3086–3092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hulseberg CE, Fénéant L, Szymanska de Wijs KM, Kessler NP, Nelson EA, Shoemaker CJ et al (2019) Arbidol and other low-molecular-weight drugs that inhibit Lassa and Ebola viruses. J Virol 93(8):e02185–e02118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Z, Yang B, Li Q, Wen L, Zhang R (2020) Clinical features of 69 cases with coronavirus disease 2019 in Wuhan China. Clin Infect Dis 79:763. https://doi.org/10.1093/cid/ciaa272

    Article  CAS  Google Scholar 

  45. Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H et al (2020) Arbidol combined with LPV/r versus LPV/r alone against corona virus disease 2019: a retrospective cohort study. J Infect 81:e1. https://doi.org/10.1016/j.jinf.2020.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. ClinicalTrials.gov (2020) NCT04255017

    Google Scholar 

  47. ClinicalTrials.gov (2020) NCT04260594

    Google Scholar 

  48. ClinicalTrials.gov (2020) NCT04273763

    Google Scholar 

  49. ClinicalTrials.gov (2020) NCT04286503

    Google Scholar 

  50. Ohkoshi M, Fujji S (1983) Effect of the synthetic protease inhibitor [N,N-dimethylcarbamoyl-methyl 4-(4-guanidinobenzoyloxy)-phenylacetate] methanesulfate on carcinogenesis by 3 methylcholanthrene in mouse skin. J Natl Cancer Inst 71(5):1053–1057

    CAS  PubMed  Google Scholar 

  51. Ohkoshi M, Oka T (1984) Clinical experience with a protease inhibitor [N,N dimethylcarbamoylmethyl4-(4-guanidinobenzoyloxy)-phenylacetate] methanesulfate for prevention of recurrence of carcinoma of the mouth and in treatment of terminal carcinoma. J Maxillofac Surg 12(4):148–152

    Article  CAS  PubMed  Google Scholar 

  52. Ikeda S, Manabe M, Muramatsu T, Takamori K, Ogawa H (1988) Protease inhibitor therapy for recessive dystrophic epidermolysis bullosa. In vitro effect and clinical trial with camostat mesylate. J Am Acad Dermatol 18(16):1246–1252

    Article  CAS  PubMed  Google Scholar 

  53. Göke B, Stöckmann F, Müller R, Lankisch PG, Creutzfeld W (1984) Effect of a specific serine protease inhibitor on the rat pancreas: systemic administration of camostat and exocrine pancreatic secretion. Digestion 30(3):171–178

    Article  PubMed  Google Scholar 

  54. Adler G, Müllenhoff A, Koop I, Bozkurt T, Göke B, Beglinger C et al (2020) Stimulation of pancreatic secretion in man by a protease inhibitor (camostate). Eur J Clin Invest 18(1)

    Google Scholar 

  55. Sai JK, Suyama M, Kubokawa Y, Matsumura Y, Inami K, Watanabe S (2010) Efficacy of camostat mesilate against dyspepsia associated with non-alcoholic mild pancreatic disease. J Gastroenterol 45(3):335–341

    Article  CAS  PubMed  Google Scholar 

  56. Yamawaki H, Futagami S, Kaneto K, Agawa S, Higuchi K, Murakami M et al (2019) Camostat mesilate, pancrelipase, and rabeprazole combination therapy improves epigastric pain in early chronic pancreatitis and functional dyspepsia with pancreatic enzyme abnormalities. Digestion 99(4):283–292

    Article  CAS  PubMed  Google Scholar 

  57. Ramsey ML, Nuttall J, Hart PA (2019) A phase 1/2 trial to evaluate the pharmacokinetics, safety, and efficacy of NI-03 in patients with Chronic pancreatitis: study protocol for a randomized controlled trial on the assessment of camostat treatment in chronic pancreatitis (TACTIC). Trials 20(1):501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. ClinicalTrials.gov (2016) NCT02693093

    Google Scholar 

  59. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Iwako M, Ino Y, Motoyoshi A, Ozeki M, Sato T, Kumuri M et al (1986) Pharmacological studies of FUT-175, nafamostat mesilate. V. Effects on the pancreatic enzymes and experimental acute pancreatitis in rats. Jpn J Pharmacol 41(2):155–162

    Article  Google Scholar 

  61. Hiraishi M, Yamazaki Z, Ichikawa K, Kanai F, Idezuki Y, Onishi K et al (1988) Plasma collection using nafamostat mesilate and dipyridamole as an anticoagulant. Int J Artif Organ 11(3):212–216

    Article  CAS  Google Scholar 

  62. Hirota M, Shimosegawa T, Kitamura K, Takeda K, Takeyama Y, Mayumi T et al (2020) Continuous regional arterial infusion versus intravenous administration of the protease inhibitor nafamostat mesilate for predicted severe acute pancreatitis: a multicenter, randomized, open-label phase 2 trial. J Gastroenterol 55(3):342–352

    Article  CAS  PubMed  Google Scholar 

  63. Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue JI et al (2016) Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein based cell-cell fusion assay. Antimicrob Agents Chemother 60(11):6532–6539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu R, Zhao X, Li J, Niu P, Wang B, Wu H et al (2020) Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281. https://doi.org/10.1016/j.cell.2020.02.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M et al (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30(3):269–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hirota M, Shimosegawa T, Kitamura K, Takeda K, Takeyama Y, Mayumi T et al (2020) Continuous regional arterial infusion versus intravenous administration of the protease inhibitor nafamostat mesilate for predicted severe acute pancreatitis: a multicenter, randomized, open-label, phase 2 trial. J Gastroenterol 55(3):342–352

    Article  CAS  PubMed  Google Scholar 

  68. Adedeji AO, Severson W, Jonsson C et al (2013) Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J Virol 87(14):8017–8028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Van Dongen MJP, Kadam RU, Juraszek J et al (2019) A small-molecule fusion inhibitor of influenza virus is orally active in mice. Science 363(6431):eaar6221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yi L, Li Z, Yuan K et al (2004) Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 78(20):11334–11339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Coughlin M, Lou G, Martinez O et al (2007) Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse. Virology 361(1):93–102

    Article  CAS  PubMed  Google Scholar 

  72. Sisk JM, Frieman MB, Machamer CE (2018) Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol 99(5):619–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Coleman CM, Sisk JM, Mingo RM et al (2016) Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J Virol 90:8924–8933.aa

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu X, Chen P, Wang J et al (2020) Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 63(3):457–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jin Z, Du X, Xu Y et al (2020) Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289–293

    Article  CAS  PubMed  Google Scholar 

  76. Singh N, Halliday AC, Thomas JM et al (2013) A safe lithium mimetic for bipolar disorder. Nat Commun 4(1332):1–7

    CAS  Google Scholar 

  77. Lynch E, Kil J, Tran U et al (2007) Development of ebselen, a glutathione peroxidase mimic, for the prevention and treatment of noise-induced hearing loss. Hear Res 226(1–2):44–51

    PubMed  Google Scholar 

  78. Baig MH, Sharma T, Ahmad I, Abohashrh M, Alam MM, Dong J-J (2021) Is PF-00835231 a Pan-SARS-CoV-2 Mpro Inhibitor? A comparative study. Molecules 26, 1678. https://doi.org/10.3390/molecules26061678

  79. de Vries M, Mohamed AS, Prescott RA, Valero-Jimenez AM, Desvignes L, O’Connor R, Steppan C, Anderson AS, Binder J, Dittmann M (2020) Comparative study of a 3CLpro inhibitor and remdesivir against both major SARS-CoV-2 clades in human airway models. BioRxiv. https://doi.org/10.1101/2020.08.28.272880

  80. Dai W, Zhang B, Su H et al (2020) Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368(6497):1331–1335

    Article  CAS  PubMed  Google Scholar 

  81. Zhang L, Lin D, Kusov Y et al (2020) α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J Med Chem 63(9):4562–4578

    Article  CAS  PubMed  Google Scholar 

  82. Shin JS, Jung E, Kim M, Baric RS, Go YY (2018) Saracatinib inhibits Middle East respiratory syndrome-coronavirus replication in vitro. Viruses 10:283

    Article  PubMed Central  CAS  Google Scholar 

  83. Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY (2007) Emodin blocks the SARS coronavirus spike protein and angiotensin converting enzyme 2 interaction. Antiviral Res 74:92–101

    Article  CAS  PubMed  Google Scholar 

  84. Kao RY, Tsui WH, Lee TS, Tanner JA, Watt RM, Huang JD, Hu L, Chen G, Chen Z, Zhang L, He T, Chan KH, Tse H, To AP, Ng LW, Wong BC, Tsoi HW, Yang D, Ho DD, Yuen KY (2004) Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem Biol 11:1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pillaiyar T, Meenakshisundaram S, Manickam M, Sankaranarayanan M (2020) A medicinal chemistry perspective of drug repositioning: recent advances and challenges in drug discovery. Eur J Med Chem 195:112275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Coleman CM, Sisk JM, Mingo RM, Nelson EA, White JM, Frieman MB (2016) Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J Virol 90:8924–8933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sham HL, Kempf DJ, Molla A, Marsh KC, Kumar GN, Chen CM et al (1998) ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob Agents Chemother 42(12):3218–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Benson CA, Deeks SG, Brun SC, Gulick RM, Eron JJ, Kessler HA et al (2002) Safety and antiviral activity at 48 weeks of lopinavir/ritonavir plus nevirapine and 2 nucleoside reverse-transcriptase inhibitors in human immunodeficiency virus type 1-infected protease inhibitor-experienced patients. J Infect Dis 185(5):599–607

    Article  CAS  PubMed  Google Scholar 

  89. Corbett AH, Lim ML, Kashuba AD (2002) Kaletra (lopinavir/ritonavir). Ann Pharmacother 36(7–8):1193–1203

    Article  CAS  PubMed  Google Scholar 

  90. Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS (2004) Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 59(3):252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chan JF, Yao Y, Yeung ML, Deng W, Bao L, Jia L (2015) Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis 212(12):1904–1913

    Article  CAS  PubMed  Google Scholar 

  92. Arabi YM, Asiri AY, Assiri AM, Aziz Jokhdar HA, Alothman A, Balkhy HH et al (2020) Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial. Trials 21(1):8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G et al (2020) A trial of lopinavir/ritonavirin adults hospitalized with severe Covid-19. N Engl J Med 382:1787. https://doi.org/10.1056/NEJMoa2001282

    Article  PubMed  Google Scholar 

  94. ClinicalTrials.gov (2020) NCT04261907

    Google Scholar 

  95. ClinicalTrials.gov (2020) NCT04295551

    Google Scholar 

  96. ClinicalTrials.gov (2020) NCT04276688

    Google Scholar 

  97. ClinicalTrials.gov (2020) NCT04307693

    Google Scholar 

  98. ClinicalTrials.gov (2020) NCT04315948

    Google Scholar 

  99. NIH (2020) NIH clinical trial of hydroxychloroquine, a potential therapy for COVID-19, begins. National Institutes of Health (NIH) (Press release). Accessed 11 Apr 2020

    Google Scholar 

  100. Mehra MR, Desai SS, Ruschitzka F, Patel AN (2020) Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet 22:2020. https://doi.org/10.1016/S0140-6736(20)31180-6

    Article  Google Scholar 

  101. Lambert DW, Yarski M, Warner FJ et al (2005) Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biolumin Chemilumin 280:30113–30119

    CAS  Google Scholar 

  102. Haga S, Nagata N, Okamura T et al (2010) TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res 85:551–555

    Article  CAS  PubMed  Google Scholar 

  103. Towler P, Staker B, Prasad SG et al (2004) ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biolumin Chemilumin 279:17996–18007

    CAS  Google Scholar 

  104. Kadam RU, Wilson IA (2017) Structural basis of influenza virus inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci U S A 114(2):206–214

    Article  CAS  PubMed  Google Scholar 

  105. Li G, De Clercq E (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 19:149–150

    Article  PubMed  CAS  Google Scholar 

  106. The Efficacy of lopinavir plus ritonavir and arbidol against novel coronavirus infection (ELACOI). https://clinicaltrials.gov/ct2/show/NCT04252885

  107. Zheng YY, Ma YT, Zhang JY, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17:259–260

    Article  CAS  PubMed  Google Scholar 

  108. Fang L, Karakiulakis G, Roth M (2020) Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 8(4):e21.91

    Article  Google Scholar 

  109. Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V et al (2016) Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531(7594):381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL et al (2017) GS-5734 and its parent nucleoside analog inhibit filo-, pneumo-, and paramyxoviruses. Sci Rep 7(1):43395

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB et al (2017) Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 9(396):eaal3653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X et al (2018) Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by theviral polymerase and the proofreading exoribonuclease. MBio 9(2):e00221–e00218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tchesnokov EP, Feng JY, Porter DP, Götte M (2019) Mechanisms of inhibition ofEbola virus RNA-dependent RNA polymerase by remdesivir. Viruses 11(4):326

    Article  CAS  PubMed Central  Google Scholar 

  114. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M (2020) The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from middle east respiratory syndrome coronavirus. J Biol Chem 295:4773. https://doi.org/10.1074/jbc.AC120.013056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M et al (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) invitro. Cell Res 30(3):269–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T et al (2020) Prophylactic and therapeutic remdesivir (GS-5734) treatment in the 345 rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A 117:6771. https://doi.org/10.1073/pnas.1922083117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mulangu S, Dodd LE, Davey RT, Mbaya OT, Proschan M, Mukadi D et al (2019) A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med 381(24):2293–2303

    Article  CAS  PubMed  Google Scholar 

  118. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A et al (2020) Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med 382:2327. https://doi.org/10.1056/NEJMoa2007016

    Article  CAS  PubMed  Google Scholar 

  119. ClinicalTrials.gov (2020) NCT04252664

    Google Scholar 

  120. ClinicalTrials.gov (2020) NCT04257656

    Google Scholar 

  121. ClinicalTrials.gov (2020) NCT04280705

    Google Scholar 

  122. ClinicalTrials.gov (2020) NCT04292730

    Google Scholar 

  123. ClinicalTrials.gov (2020) NCT04292899

    Google Scholar 

  124. ClinicalTrials.gov (2020) NCT04302766

    Google Scholar 

  125. ClinicalTrials.gov (2020) NCT04314817

    Google Scholar 

  126. Graci JD, Cameron CE (2006) Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  127. Chu CM, Cheng VCC, Hung IFN et al (2004) Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 59:252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Furuta Y, Takahashi K, Fukuda Y, Kuno M, Kamiyama T, Kozaki K et al (2002) In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother 46(4):977–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Furuta Y, Komeno T, Nakamura T (2017) Favipiravir (T-705), A broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 93(7):449–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jin Z, Smith LK, Rajwanshi VK, Kim B, Deval J (2014) The ambiguous base-pairing and high substrate efficiency of T-705 (favipiravir) ribofuranosyl 5′-triphosphate towards influenza A virus polymerase. PLoS One 8(7):e68347

    Article  CAS  Google Scholar 

  131. Delang L, Abdelnabi R, Neyts J (2018) Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res 153:85–94

    Article  CAS  PubMed  Google Scholar 

  132. Furuta Y, Takahashi K, Shiraki K, Sakamoto K, Smee DF, Barnard DL et al (2009) T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNAviral infections. Antiviral Res 82(3):95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Furuta Y, Takahashi K, Shiraki K et al (2009) T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res 82:95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sissoko D, Laouenan C, Folkesson E, M’Lebing AB, Beavogui AH, Baize S et al (2016) Experimental treatment with favipiravir for Ebola virus disease (the JIKI Trial): a historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Med 13(3):e1001967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. ClinicalTrials.gov (2020) NCT04310228

    Google Scholar 

  136. Sheahan TP, Sims AC, Zhou S et al (2020) An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 12(541):eabb5883

    Article  CAS  PubMed  Google Scholar 

  137. COVID-19 first in human study to evaluate safety, tolerability, and pharmacokinetics of EIDD-2801 in healthy volunteers. https://clinicaltrials.gov/ct2/show/NCT04392219

  138. Yin W, Mao C, Luan X et al (2020) Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368(6498):1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Disclosure: Some parts of this article have been previously published in ref. 10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanigaimalai Pillaiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pillaiyar, T., Manickam, M., Meenakshisundaram, S., Benjamine, A.J. (2021). Candidate Drugs for the Potential Treatment of Coronavirus Diseases. In: Roy, K. (eds) In Silico Modeling of Drugs Against Coronaviruses. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/7653_2020_67

Download citation

  • DOI: https://doi.org/10.1007/7653_2020_67

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1365-8

  • Online ISBN: 978-1-0716-1366-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics