Skip to main content

Recent Perspectives on COVID-19 and Computer-Aided Virtual Screening of Natural Compounds for the Development of Therapeutic Agents Towards SARS-CoV-2

  • Protocol
  • First Online:
In Silico Modeling of Drugs Against Coronaviruses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

SARS-CoV-2 is the pathogen accountable for the recent COVID-19 outbreak that originated from China in December 2019. There are about a million confirmed cases of the infection, and thousands of deaths have been witnessed across 216 countries worldwide as of first week of July 2020. As no approved drugs are currently available for treating COVID-19, it is an alarming situation calling the need to develop alternative therapeutic agents. In order to address the aforementioned need, the underlying mechanism and structural information of SARS-CoV-2 at the molecular level should be understood. The computational biology approaches such as computer-aided virtual screening and molecular modelling provide a significant breakthrough in understanding the structural aspects of various molecular targets of coronavirus and identification novel lead molecules. Natural molecules are one of the probable alternatives as many of these compounds possess ideal drug likeliness and pharmacokinetic features and might probably be used as lead molecules against various targets of SARS-CoV-2. The current chapter provides an overview of different types of coronaviruses, SARS-CoV-2 and its genetic and structural information, the impact of COVID-19 on various sectors such as health and economy, conventional drugs currently used and their shortcomings, various anti-viral compounds present in nature, the importance of natural lead molecules, computational approaches for molecular modelling of the target proteins, major drug targets that are identified, and virtual screening of herbal-based molecules using molecular docking and molecular dynamic simulation studies. This chapter is thus focused on portraying the relevance of utilizing natural lead molecules by virtual screening and pharmacokinetics prediction for the development of effective lead molecules against SARS-CoV-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2020) Novel coronavirus (COVID-19) situation

    Google Scholar 

  2. Carlos WG, Dela Cruz CS, Cao B, Pasnick S, Jamil S (2020) Novel Wuhan (2019-nCoV) coronavirus. Am J Respir Crit Care Med 201:P7–P8

    Article  PubMed  Google Scholar 

  3. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, Yan Y (2020) The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—an update on the status. Mil Med Res 7:11

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY (2020) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9:221–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khan S, Siddique R, Shereen MA, Ali A, Liu J, Bai Q, Bashir N, Xue M (2020) Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: biology and therapeutic options. J Clin Microbiol 58:e00187–e00120

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gralinski LE, Menachery VD (2020) Return of the coronavirus: 2019-nCoV. Viruses 12:135

    Article  PubMed Central  Google Scholar 

  7. Atluri S, Manchikanti L, Hirsch JA (2020) Expanded umbilical Cord Mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: the case for compassionate use. Pain Physician 23:E71–E83

    PubMed  Google Scholar 

  8. Di Gennaro F, Pizzol D, Marotta C, Antunes M, Racalbuto V, Veronese N, Smith L (2020) Coronavirus diseases (COVID-19) current status and future perspectives: a narrative review. Int J Environ Res Public Health 17:E2690

    Article  PubMed  CAS  Google Scholar 

  9. Laing T (2020) The economic impact of the coronavirus 2019 (Covid-2019): implications for the mining industry. Extr Ind Soc. https://doi.org/10.1016/j.exis.2020.04.003

  10. Nicola M, Alsafi Z, Sohrabi C, Kerwan A, Al-Jabir A, Iosifidis C, Agha M, Agha R (2020) The socio-economic implications of the coronavirus and COVID-19 pandemic: a review. Int J Surg 78:185–193

    Article  PubMed  PubMed Central  Google Scholar 

  11. World Bank Group (2020) Data Bank. https://data.worldbank.org/indicator/NY.GDP.MINR.RT.ZS

  12. Ozili PK, Arun TG (2020) Spillover of COVID-19: impact on the global economy. SSRN Electron J. https://doi.org/10.2139/ssrn.3562570

  13. Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17:181–192

    Article  CAS  PubMed  Google Scholar 

  14. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-CoV-2. Nat Med 26:450–452

    Article  CAS  PubMed  Google Scholar 

  15. Li F, Li W, Farzan M, Harrison SC (2005) Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864–1868

    Article  CAS  PubMed  Google Scholar 

  16. World Health Organization. (2020). Middle East respiratory syndrome coronavirus (MERS-CoV)

    Google Scholar 

  17. Hui DS, Azhar EI, Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, Mchugh TD, Memish ZA, Drosten C, Zumla A, Petersen E (2020) The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 91:264–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. World Health Organization (2020) Coronavirus disease (COVID-19) technical guidance: infection prevention and control/WASH. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/infection-prevention-and-control. Accessed 2020

  19. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ (2020) A new coronavirus associated with human respiratory disease in China. Nature 579:265–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cleemput S, Dumon W, Fonseca V, Karim WA, Giovanetti M, Alcantara LC, Deforche K, de Oliveira T (2020) Genome detective coronavirus typing tool for rapid identification and characterization of novel coronavirus genomes. Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa145

  21. Fahmi M, Kubota Y, Ito M (2020) Nonstructural proteins NS7b and NS8 are likely to be phylogenetically associated with evolution of 2019-nCoV. Infect Genet Evol 81:104272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z, Rao Z (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368:779–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F (2020) Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov 6:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, Mayhew S (2020) The COVID-19 vaccine development landscape. Nat Rev Drug Discov 19:305–306

    Article  CAS  PubMed  Google Scholar 

  26. FDA News Release. Coronavirus (COVID-19) update: FDA continues to facilitate development of treatments. Press announcement 19 Mar 2020

    Google Scholar 

  27. Hodgson J (2020) The pandemic pipeline. Nat Biotechnol 38:523–532

    Article  CAS  PubMed  Google Scholar 

  28. Victoria Rees. Global operation identifies 34,000 falsified coronavirus medicines. Pharmaceut Rev. 20 Mar 2020

    Google Scholar 

  29. Fight the Fakes official statement to COVID-19. 13 Mar 2020. http://fightthefakes.org/updates/fight-the-fakes-official-statement-to-covid-19/

  30. Helal IM, El-Bessoumy A, Al-Bataineh E, Joseph MRP, Rajagopalan P, Chandramoorthy HC, Ben Hadj Ahmed S (2019) Antimicrobial efficiency of essential oils from traditional medicinal plants of Asir Region, Saudi Arabia, over drug resistant isolates. Biomed Res Int 2019:8928306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rathbun RC, Lewis MM, Miller MM (2019) Antiretroviral therapy for HIV infection. Medscape. https://emedicine.medscape.com/article/1533218-overview. Accessed 31 May 2020

  32. Menéndez-Arias L, Gago F (2013) Antiviral agents: structural basis of action and rational design. Subcell Biochem 68:599–630

    Article  PubMed  CAS  Google Scholar 

  33. Liu S, Zheng Q, Wang Z (2020) Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics 36(11):3295–3298. https://doi.org/10.1093/bioinformatics/btaa224

    Article  CAS  PubMed  Google Scholar 

  34. Quintana M, Bilbao A, Comas-Barceló J, Bujons J, Triola G (2019) Identification of benzo[cd]indol-2(1H)-ones as novel Atg4B inhibitors via a structure-based virtual screening and a novel AlphaScreen assay. Eur J Med Chem 178:648–666

    Google Scholar 

  35. Wang Z, Sun H, Shen C, Hu X, Gao J, Li D, Cao D, Hou T (2020) Combined strategies in structure-based virtual screening. Phys Chem Chem Phys 22:3149–3159

    Article  CAS  PubMed  Google Scholar 

  36. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H (2020) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2020.02.008

  37. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. https://doi.org/10.1038/s41586-020-2223-y

  38. Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A (2020) Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar Drugs 18:E225

    Article  PubMed  CAS  Google Scholar 

  39. Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, Christie C, Dalenberg K, Duarte JM, Dutta S, Feng Z, Ghosh S, Goodsell DS, Green RK, Guranovic V, Guzenko D, Hudson BP, Kalro T, Liang Y, Lowe R, Namkoong H, Peisach E, Periskova I, Prlic A, Randle C, Rose A, Rose P, Sala R, Sekharan M, Shao C, Tan L, Tao YP, Valasatava Y, Voigt M, Westbrook J, Woo J, Yang H, Young J, Zhuravleva M, Zardecki C (2019) RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res 47:D464–D474

    Article  CAS  PubMed  Google Scholar 

  40. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30:343–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang S, Yang M, Hong Z, et al (2020) Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B 10(7):1228–1238. https://doi.org/10.1016/j.apsb.2020.04.009

  43. Osipiuk J, Jedrzejczak R, Tesar C, Endres M, Stols L, Babnigg G, Kim Y, Michalska K, Joa-chimiak A. Center for structural genomics of infectious diseases (CSGID). The crystal structure of papain-like protease of SARS CoV-2. https://doi.org/10.2210/pdb6W9C/pdb, http://www.rcsb.org/structure/6W9C

  44. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368:409–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pearce NM, Krojer T, Bradley AR, Collins P, Nowak RP, Talon R, Marsden BD, Kelm S, Shi J, Deane CM, von Delft F (2017) A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density. Nat Commun 8:15123

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339–D343

    Article  CAS  PubMed  Google Scholar 

  47. Zhu J, Wang S, Bu D, Xu J (2018) Protein threading using residue co-variation and deep learning. Bioinformatics 34:1263–1273

    Google Scholar 

  48. Webb B, Sali A (1654) Protein structure modeling with MODELLER. Methods Mol Biol 2017:39–54

    Google Scholar 

  49. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bates PA, Kelley LA, MacCallum RM, Sternberg MJ (2001) Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 5:39–46

    Article  PubMed  CAS  Google Scholar 

  51. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ul Qamar MT, Alqahtani SM, Alamri MA, Chen LL (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. https://doi.org/10.1016/j.jpha.2020.03.009

  53. Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jones DT (1999) GenTHREADER: an efficient and reliable protein folds recognition method for genomic sequences. J Mol Biol 287:797–815

    Article  CAS  PubMed  Google Scholar 

  55. Yan RX, Si JN, Wang C, Zhang Z (2009) DescFold: a web server for protein fold recognition. BMC Bioinformatics 10:416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80:1715–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zheng W, Li Y, Zhang C, Pearce R, Mortuza SM, Zhang Y (2019) Deep-learning contact-map guided protein structure prediction in CASP13. Proteins 87:1149–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bradley P, Misura KM, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309:1868–1871

    Article  CAS  PubMed  Google Scholar 

  60. Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A (2013) CABS-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res 41:W406–W411

    Article  PubMed  PubMed Central  Google Scholar 

  61. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6:e28766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang C, Zheng W, Huang X, Bell EW, Zhou X, Zhang Y (2020) Protein structure and sequence re-analysis of 2019-nCoV genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and HIV-1. J Proteome Res 19:1351–1360

    Article  CAS  PubMed  Google Scholar 

  63. Laskowski RA, MacArthur MW, Moss M, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  64. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  CAS  PubMed  Google Scholar 

  65. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of non-bonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101:2525–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Torsten S, Jurgen K, Nicolas G, Manuel P (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  Google Scholar 

  68. Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31:3316–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three1024 dimensional profiles. Nature 356:83–85

    Article  CAS  PubMed  Google Scholar 

  70. Land H, Humble MS (1685) YASARA: a tool to obtain structural guidance in biocatalytic investigations. Methods Mol Biol 2018:43–67

    Google Scholar 

  71. Lovell SC, Davis IW, Arendall WB III, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2002) Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50:437–450

    Article  CAS  Google Scholar 

  72. Wiederstein J, Sippl M ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Google Scholar 

  73. Wackett LP (2018) Natural product databases: an annotated selection of world wide web sites relevant to the topics in microbial biotechnology. J Microbial Biotechnol 11:797–798

    Article  Google Scholar 

  74. Okombo J, Chibale K (2018) Recent updates in the discovery and development of novel antimalarial drug candidates. Medchemcomm 9:437–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Paricharak S, Méndez-Lucio O, Chavan Ravindranath A, Bender A, IJzerman AP, van Westen G (2018) Data-driven approaches used for compound library design, hit triage and bioactivity modeling in high-throughput screening. Brief Bioinform 19:277–285

    CAS  PubMed  Google Scholar 

  76. Yu W, MacKerell AD Jr (2017) Computer-aided drug design methods. Methods Mol Biol 1520:85–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anastasio TJ (2017) Editorial: computational and experimental approaches in multi-target pharmacology. Front Pharmacol 8:443

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lipinski C, Lombardo F, Dominy B, Feeney P (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  79. Egan WJ, Walters WP, Murcko MA (2002) Guiding molecules towards drug-likeness. Curr Opin Drug Discov Devel 5:540–549

    CAS  PubMed  Google Scholar 

  80. Frimurer T, Bywater R, Nærum L, Lauritsen L, Brunak S (2000) Improving the odds in discriminating “drug-like” from “nondrug-like” compounds. J Chem Inf Comput Sci 40:1315–1324

    Article  CAS  PubMed  Google Scholar 

  81. Ajay A, Walters P, Murcko A (1998) Can we learn to distinguish between “drug-like” and “nondrug-like” molecules? J Med Chem 41:3314–3321

    Article  CAS  PubMed  Google Scholar 

  82. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55–68

    Article  CAS  PubMed  Google Scholar 

  83. Martin YC (2005) A bioavailability score. J Med Chem 48:3164–3170

    Article  CAS  PubMed  Google Scholar 

  84. Ajay A, Bemis W, Murcko A (1999) Blood brain barrier: design in libraries with CNS activity. J Med Chem 42:4942–4951

    Article  CAS  PubMed  Google Scholar 

  85. Yazdanian M, Glynn SL, Wright JL, Hawi A (1998) Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res 15:1490–1494

    Article  CAS  PubMed  Google Scholar 

  86. Daina A, Michielin O, Zoete V (2014) iLOGP: a simple, robust, and efficient description of n-Octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model 54:3284–3301

    Article  CAS  PubMed  Google Scholar 

  87. Delaney JS (2004) ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci 44:1000–1005

    Article  CAS  PubMed  Google Scholar 

  88. Leeson PD, Davis AM, Steele J (2004) Drug-like properties: guiding principles for design–or chemical prejudice? Drug Discov Today Technol 1:189–195

    Article  CAS  PubMed  Google Scholar 

  89. Irvine D, Takahashi L, Lockhart K, Cheong J, Tolan W, Selick E, Grove R (1999) MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci 88:28–33

    Article  CAS  PubMed  Google Scholar 

  90. Averbukh I, Ben-Zvi D, Mishra S, Barkai N (2014) Scaling morphogen gradients during tissue growth by a cell division rule. Development 141:2150–2156

    Article  CAS  PubMed  Google Scholar 

  91. Veber F, Johnson R, Chen HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  92. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  PubMed  PubMed Central  Google Scholar 

  93. Naik PK, Alam A, Malhotra A, Rizvi O (2010) Molecular modeling and structure-activity relationship of podophyllotoxin and its congeners. J Biomol Screen 15:528–540

    Article  CAS  PubMed  Google Scholar 

  94. Schrodinger release 2020-1: QikProp, Schrodinger, LLC, New York, NY

    Google Scholar 

  95. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2019) Correction to “admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties”. J Chem Inf Model 59:4959

    Article  CAS  PubMed  Google Scholar 

  96. García-Sosa AT, Oja M, Hetényi C, Maran U (2012) DrugLogit: logistic discrimination between drugs and nondrugs including disease-specificity by assigning probabilities based on molecular properties. J Chem Inf Model 52:2165–2180

    Article  PubMed  CAS  Google Scholar 

  97. El-Saadi MW, Williams-Hart T, Salvatore BA, Mahdavian E (2015) Use of in-silico assays to characterize the ADMET profile and identify potential therapeutic targets of fusarochromanone, a novel anti-cancer agent. In Silico Pharmacol 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dong D, Xu Z, Zhong W, Peng S (2018) Parallelization of molecular docking: a review. Curr Top Med Chem 18:1015–1028

    Article  CAS  PubMed  Google Scholar 

  100. Li J, Fu A, Zhang L (2019) An overview of scoring functions used for protein-ligand interactions in molecular docking. Interdiscip Sci 11:320–328

    Article  PubMed  CAS  Google Scholar 

  101. Dar AM, Mir S (2017) Molecular docking: approaches, types, applications and basic challenges. J Anal Bioanal Tech 8:356

    Article  CAS  Google Scholar 

  102. Tan KP, Nguyen TB, Patel S, Varadarajan R, Madhusudhan MS (2013) Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins. Nucleic Acids Res 41:W314–W321

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916

    Article  CAS  PubMed  Google Scholar 

  105. Huang B (2009) MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS 13:325–330

    Article  CAS  PubMed  Google Scholar 

  106. Schmidtke P, Bidon-Chanal A, Luque FJ, Barril X (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27:3276–3285

    Article  CAS  PubMed  Google Scholar 

  107. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:W270–W277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins 55:288–304

    Article  CAS  PubMed  Google Scholar 

  110. Vilar S, Cozza G, Moro S (2008) Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 8:1555–1572

    Article  CAS  PubMed  Google Scholar 

  111. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  112. Elfiky AA (2020) Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci 253:117592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gupta S, Lynn AM, Gupta V (2018) Standardization of virtual-screening and post-processing protocols relevant to in-silico drug discovery. 3 Biotech 8:504

    Article  PubMed  PubMed Central  Google Scholar 

  114. Al-Khafaji K, Al-DuhaidahawiL D, Taskin TT (2020) Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. J Biomol Struct Dyn:1–9

    Google Scholar 

  115. Pawar AY (2020) Combating devastating COVID-19 by drug repurposing. Int J Antimicrob Agents:105984. https://doi.org/10.1016/j.ijantimicag.2020.105984. Published online ahead of print, 17 Apr 2020

  116. Kandeel M, Al-Nazawi M (2020) Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci 251:117627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Amin M, Abbas G (2020) Docking study of chloroquine and hydroxychloroquine interaction with SARS-CoV-2 spike glycoprotein-an in silico insight into the comparative efficacy of repurposing antiviral drugs. J Biomol Struct Dyn:1–11. Published online ahead of print, 29 May 2020

    Google Scholar 

  118. Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X (2018) Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discovery 13:23–37

    Article  CAS  Google Scholar 

  119. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Google Scholar 

  120. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2015) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  121. Pang YP (2016) FF12MC: a revised AMBER forcefield and new protein simulation protocol. Proteins 84:1490–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. De-Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061

    Article  CAS  PubMed  Google Scholar 

  124. Ma J, Huo XQ, Chen X, Zhu WX, Yao MC, Qiao YJ, Zhang YL (2020) Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi 45:1219–1224

    PubMed  Google Scholar 

  125. Khan SA, Zia K, Ashraf S, Uddin R, Ul-Haq Z (2020) Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J Biomol Struct Dyn:1–10

    Google Scholar 

  126. Arcon JP, Modenutti CP, Avendaño D, Lopez ED, Defelipe LA, Ambrosio FA, Turjanski AG, Forli S, Marti MA (2019) AutoDock Bias: improving binding mode prediction and virtual screening using known protein-ligand interactions. Bioinformatics 35:3836–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Umesh, Kundu D, Selvaraj C, Singh SK, Dubey VK (2020) Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J Biomol Struct Dyn:1–9

    Google Scholar 

  128. Kim Y, Jedrzejczak R, Maltseva N, Endres M, Mececar A, Michalska K, Joachimiak A. Center for Structural Genomics of infectious diseases (CSGID). Crystal structure of ADP ribose phosphatase of NSP3 from SARS CoV-2 9. https://doi.org/10.2210/pdb6VXS/pdb, https://www.rcsb.org/structure/6VXS

  129. Kim Y, Jedrzejczak R, Maltseva N, Endres M, Godzik A, Michalska K, Joachimiak A (2020) Crystal structure of NSP15 Endoribonuclease from SARS CoV-2. Biorxiv

    Google Scholar 

  130. Minasov G, Shuvalova L, Rosas-Lemus M, Kiryukhina O, Wiersum G, Godzik A, Jaroszewski L, Stogios PJ, Skarina T, Satchell KJF (2020) 1.95 Angstrom resolution crystal structure of NSP10–NSP16 complex from SARSCoV-2. https://doi.org/10.2210/pdb6W75/pdb, https://www.rcsb.org/structure/6W75

  131. Minasov G, Shuvalova L,Wiersum G, Satchell KJF (2020) 2.05 Angstrom resolution crystal structure of C-terminal dimerization domain of Nucleocapsid Phosphoprotein from SARS-CoV-2. https://doi.org/10.2210/pdb6WJI/pdb, https://www.rcsb.org/structure/6WJI

  132. Nelson CA, Fremont DH (2020) Structure of the SARS-CoV-2 ORF7A encoded accessory protein. https://doi.org/10.2210/pdb6W37/pdb, https://www.rcsb.org/structure/6W37

  133. Tan K, Kim Y, Jedrzejczak R, Maltseva N, Endres M, Michalska K, Joachimiak A (2020) The crystal structure of Nsp9 replicase protein of COVID-19. https://doi.org/10.2210/pdb6W37/pdb, https://www.rcsb.org/structure/6W37

  134. Zhu Y, Sun F (2020) Crystal structure of HR2 domain of 2019-nCoV S2 subunit. https://doi.org/10.2210/pdb6LVN/pdb, https://www.rcsb.org/structure/6lvn

  135. Usha T, Shanmugarajan D, Goyal AK, Kumar CS, Middha SK (2017) Recent updates on computer-aided drug discovery: time for a paradigm shift. Curr Top Med Chem 17(30):3296–3307

    Article  CAS  PubMed  Google Scholar 

  136. Xia X (2017) Bioinformatics and drug discovery. Curr Top Med Chem 17(15):1709–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yao L, Evans JA, Rzhetsky A (2010) Novel opportunities for computational biology and sociology in drug discovery. Trends Biotechnol 28(4):161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Atta-ur-Rahman, Caldwell GW, Choudhary MI, Yan Z (eds) (2009) Frontiers in drug design & discovery, vol 4. Bentham Science Publishers Ltd., Hilversum, p 353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinosh Skariyachan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gopal, D., Skariyachan, S. (2020). Recent Perspectives on COVID-19 and Computer-Aided Virtual Screening of Natural Compounds for the Development of Therapeutic Agents Towards SARS-CoV-2. In: Roy, K. (eds) In Silico Modeling of Drugs Against Coronaviruses. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/7653_2020_44

Download citation

  • DOI: https://doi.org/10.1007/7653_2020_44

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1365-8

  • Online ISBN: 978-1-0716-1366-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics