Skip to main content

Alternative Methods Used to Assess Potential Embryo-Fetal Developmental Risk of Pharmaceuticals

  • Protocol
  • First Online:
Developmental and Reproductive Toxicology

Abstract

Alternative developmental toxicity assays are used by pharmaceutical companies to detect the teratogenic potential of human drugs. These methods are intended to reduce, refine, or replace (3Rs) animal use in nonclinical embryo-fetal developmental toxicity testing. Screening methods (e.g., rodent whole embryo culture, embryonic stem cells, and zebrafish) are powerful tools to identify hazards; they also provide unique mechanistic insights that improve our understanding of developmental toxicology. By improving the sophistication of these models over the past two decades, the field of developmental and reproductive toxicology has been preparing to meet the increased need for enhanced developmental toxicity testing in drug discovery and development. Interest in these tools has been further amplified since the International Conference on Harmonisation (ICH) indicated that it will address the use of in vitro, ex vivo, and non-mammalian developmental toxicity assays for regulatory purposes in the upcoming revisions to the ICH S5(R2) guideline. Moreover, alternative assays combined with newer technologies such as high-content imaging, automated embryo handling, and functional genomics may expedite testing of pharmaceuticals for teratogenic liabilities while also increasing the informational content of these screens. To illustrate the potential of alternative developmental toxicity assays, some examples of modern methods as well as modifications to enhance these methods in the future are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapin R, Augustine-Rauch K, Beyer B, Daston G, Finnell R, Flynn T, Hunter S, Mirkes P, O’Shea KS, Piersma A, Sandler D, Vanparys P, Van Maele-Fabry G (2008) State of the art in developmental toxicity screening methods and a way forward: a meeting report addressing embryonic stem cells, whole embryo culture, and zebrafish. Birth Defects Res B Dev Reprod Toxicol 83(4):446–456

    Article  CAS  PubMed  Google Scholar 

  2. Paquette JA, Kumpf SW, Streck RD, Thomson JJ, Chapin RE, Stedman DB (2008) Assessment of the embryonic stem cell test and application and use in the pharmaceutical industry. Birth Defects Res B Dev Reprod Toxicol 83(2):104–111

    Article  CAS  PubMed  Google Scholar 

  3. Brannen KC, Panzica-Kelly JM, Danberry TL, Augustine-Rauch KA (2010) Development of a zebrafish embryo teratogenicity assay and quantitative prediction model. Birth Defects Res B Dev Reprod Toxicol 89(1):66–77

    Article  CAS  PubMed  Google Scholar 

  4. Barrier M, Jeffay S, Nichols HP, Chandler KJ, Hoopes MR, Slentz-Kesler K, Hunter ES 3rd (2011) Mouse embryonic stem cell adherent cell differentiation and cytotoxicity (ACDC) assay. Reprod Toxicol 31(4):383–391

    Article  CAS  PubMed  Google Scholar 

  5. Thomson J, Johnson K, Chapin R, Stedman D, Kumpf S, Ozolins TR (2011) Not a walk in the park: the ECVAM whole embryo culture model challenged with pharmaceuticals and attempted improvements with random forest design. Birth Defects Res B Dev Reprod Toxicol 92(2):111–121

    Article  CAS  PubMed  Google Scholar 

  6. Gustafson AL, Stedman DB, Ball J, Hillegass JM, Flood A, Zhang CX, Panzica-Kelly J, Cao J, Coburn A, Enright BP, Tornesi MB, Hetheridge M, Augustine-Rauch KA (2012) Inter-laboratory assessment of a harmonized zebrafish developmental toxicology assay—progress report on phase I. Reprod Toxicol 33(2):155–164

    Article  CAS  PubMed  Google Scholar 

  7. Selderslaghs IW, Blust R, Witters HE (2012) Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reprod Toxicol 33(2):142–154

    Article  CAS  PubMed  Google Scholar 

  8. Zhang C, Cao J, Kenyon JR, Panzica-Kelly JM, Gong L, Augustine-Rauch K (2012) Development of a streamlined rat whole embryo culture assay for classifying teratogenic potential of pharmaceutical compounds. Toxicol Sci 127(2):535–546

    Article  CAS  PubMed  Google Scholar 

  9. Panzica-Kelly JM, Brannen KC, Ma Y, Zhang CX, Flint OP, Lehman-McKeeman LD, Augustine-Rauch KA (2013) Establishment of a molecular embryonic stem cell developmental toxicity assay. Toxicol Sci 131(2):447–457

    Article  CAS  PubMed  Google Scholar 

  10. Ball JS, Stedman DB, Hillegass JM, Zhang CX, Panzica-Kelly J, Coburn A, Enright BP, Tornesi B, Amouzadeh HR, Hetheridge M, Gustafson AL, Augustine-Rauch KA (2014) Fishing for teratogens: a consortium effort for a harmonized zebrafish developmental toxicology assay. Toxicol Sci 139(1):210–219

    Article  CAS  PubMed  Google Scholar 

  11. Panzica-Kelly JM, Zhang CX, Augustine-Rauch KA (2015) Optimization and performance assessment of the chorion-off [dechorinated] zebrafish developmental toxicity assay. Toxicol Sci 146(1):127–134

    Article  CAS  PubMed  Google Scholar 

  12. ICH S5(R3) Concept Paper (2015) Detection of toxicity to reproduction for medicinal products & toxicity to male fertility. www.ich.org

  13. Daston GP, Beyer BK, Carney EW, Chapin RE, Friedman JM, Piersma AH, Rogers JM, Scialli AR (2014) Exposure-based validation list for developmental toxicity screening assays. Birth Defects Res B Dev Reprod Toxicol 101(6):423–428. doi:10.1002/bdrb.21132

    Article  CAS  PubMed  Google Scholar 

  14. New DA (1978) Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol Rev Camb Philos Soc 53(1):81–122

    Article  CAS  PubMed  Google Scholar 

  15. Webster WS, Brown-Woodman PD, Ritchie HE (1997) A review of the contribution of whole embryo culture to the determination of hazard and risk in teratogenicity testing. Int J Dev Biol 41(2):329–335

    CAS  PubMed  Google Scholar 

  16. Augustine-Rauch K, Zhang CX, Panzica-Kelly JM (2010) In vitro developmental toxicology assays: a review of the state of the science of rodent and zebrafish whole embryo culture and embryonic stem cell assays. Birth Defects Res C Embryo Today 90(2):87–98

    Article  CAS  PubMed  Google Scholar 

  17. Lee HY, Inselman AL, Kanungo J, Hansen DK (2012) Alternative models in developmental toxicology. Syst Biol Reprod Med 58(1):10–22

    Article  CAS  PubMed  Google Scholar 

  18. Kochhar DM (1980) In vitro testing of teratogenic agents using mammalian embryos. Teratog Carcinog Mutagen 1(1):63–74

    Article  CAS  PubMed  Google Scholar 

  19. Sadler TW, Horton WE, Warner CW (1982) Whole embryo culture: a screening technique for teratogens? Teratog Carcinog Mutagen 2(3–4):243–253

    Article  CAS  PubMed  Google Scholar 

  20. Green M, Lebron J, Tanis K, Redfern B, Zhu L, Yu Y, Wang E, Kaczor A, Wysoczanski E, Chen F, Raymond C, Mattson B, Sistare F, DeGeorge J (2016) Use of alternative developmental toxicity assays to assess teratogenicity potential of drugs and reduce animal usage. Reprod Toxicol (submitted)

    Google Scholar 

  21. Brown NA, Fabro S (1981) Quantitation of rat embryonic development in vitro: a morphological scoring system. Teratology 24(1):65–78

    Article  CAS  PubMed  Google Scholar 

  22. Klug S, Lewandowski C, Neubert D (1985) Modification and standardization of the culture of early postimplantation embryos for toxicological studies. Arch Toxicol 58(2):84–88

    Article  CAS  PubMed  Google Scholar 

  23. Van Maele-Fabry G, Delhaise F, Picard JJ (1990) Morphogenesis and quantification of the development of post-implantation mouse embryos. Toxicol In Vitro 4(2):149–156

    Article  CAS  PubMed  Google Scholar 

  24. Zhang CX, Danberry T, Jacobs MA, Augustine-Rauch K (2010) A dysmorphology score system for assessing embryo abnormalities in rat whole embryo culture. Birth Defects Res B Dev Reprod Toxicol 89(6):485–492

    Article  CAS  PubMed  Google Scholar 

  25. Zhang C, Panzica-Kelly J, Augustine-Rauch K (2013) The rat whole embryo culture assay using the Dysmorphology Score system. Methods Mol Biol 947:423–450

    Article  CAS  PubMed  Google Scholar 

  26. Tonk EC, Robinson JF, Verhoef A, Theunissen PT, Pennings JL, Piersma AH (2013) Valproic acid-induced gene expression responses in rat whole embryo culture and comparison across in vitro developmental and non-developmental models. Reprod Toxicol 41:57–66

    Article  CAS  PubMed  Google Scholar 

  27. Naya M, Kito Y, Eto K, Deguchi T (1991) Development of rabbit whole embryo culture during organogenesis. Congenit Anom 31(3):153–156

    Article  Google Scholar 

  28. Marshall VA, Carney EW (2012) Rabbit whole embryo culture. Methods Mol Biol 889:239–252

    Article  CAS  PubMed  Google Scholar 

  29. Hansen JM, Carney EW, Harris C (1999) Differential alteration by thalidomide of the glutathione content of rat vs. rabbit conceptuses in vitro. Reprod Toxicol 13(6):547–554

    Article  CAS  PubMed  Google Scholar 

  30. Johnson JT, Hansen MS, Wu I, Healy LJ, Johnson CR, Jones GM, Capecchi MR, Keller C (2006) Virtual histology of transgenic mouse embryos for high-throughput phenotyping. PLoS Genet 2(4):e61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gignac PM, Kley NJ (2014) Iodine-enhanced micro-CT imaging: methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates. J Exp Zool B Mol Dev Evol 322(3):166–176

    Article  PubMed  Google Scholar 

  32. Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tomer R, Ye L, Hsueh B, Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9(7):1682–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wise LD, Winkelmann CT, Dogdas B, Bagchi A (2013) Micro-computed tomography imaging and analysis in developmental biology and toxicology. Birth Defects Res C Embryo Today 99(2):71–82

    Article  CAS  PubMed  Google Scholar 

  35. Henning AL, Jiang MX, Yalcin HC, Butcher JT (2011) Quantitative three-dimensional imaging of live avian embryonic morphogenesis via micro-computed tomography. Dev Dyn 240(8):1949–1957

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gregg CL, Recknagel AK, Butcher JT (2015) Micro/nano-computed tomography technology for quantitative dynamic, multi-scale imaging of morphogenesis. Methods Mol Biol 1189:47–61

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K (2013) Structural and molecular interrogation of intact biological systems. Nature 497(7449):332–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vickerton P, Jarvis J, Jeffery N (2013) Concentration-dependent specimen shrinkage in iodine-enhanced microCT. J Anat 223(2):185–193

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wong MD, Spring S, Henkelman RM (2013) Structural stabilization of tissue for embryo phenotyping using micro-CT with iodine staining. PLoS One 8(12):e84321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Suter-Dick L, Alves PM, Blaauboer BJ, Bremm KD, Brito C, Coecke S, Flick B, Fowler P, Hescheler J, Ingelman-Sundberg M, Jennings P, Kelm JM, Manou I, Mistry P, Moretto A, Roth A, Stedman D, van de Water B, Beilmann M (2015) Stem cell-derived systems in toxicology assessment. Stem Cells Dev 24(11):1284–1296

    Article  PubMed  Google Scholar 

  41. Genschow E, Spielmann H, Scholz G, Pohl I, Seiler A, Clemann N, Bremer S, Becker K (2004) Validation of the embryonic stem cell test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 32(3):209–244

    CAS  PubMed  Google Scholar 

  42. Marx-Stoelting P, Adriaens E, Ahr HJ, Bremer S, Garthoff B, Gelbke HP, Piersma A, Pellizzer C, Reuter U, Rogiers V, Schenk B, Schwengberg S, Seiler A, Spielmann H, Steemans M, Stedman DB, Vanparys P, Vericat JA, Verwei M, van der Water F, Weimer M, Schwarz M (2009) A review of the implementation of the embryonic stem cell test (EST). The report and recommendations of an ECVAM/ReProTect Workshop. Altern Lab Anim 37(3):313–328

    CAS  PubMed  Google Scholar 

  43. Buesen R, Visan A, Genschow E, Slawik B, Spielmann H, Seiler A (2004) Trends in improving the embryonic stem cell test (EST): an overview. ALTEX 21(1):15–22

    PubMed  Google Scholar 

  44. Höpfl G, Gassmann M, Desbaillets I (2004) Germ cell protocols. In: Differentiating embryonic stem cells into embryoid bodies, Methods in molecular biology, vol 254. Humana Press. doi:10.1385/1-59259-741-6:079

  45. Chapin RE, Stedman DB (2009) Endless possibilities: stem cells and the vision for toxicology testing in the 21st century. Toxicol Sci 112(1):17–22

    Article  CAS  PubMed  Google Scholar 

  46. Puscheck EE, Awonuga AO, Yang Y, Jiang Z, Rappolee DA (2015) Molecular biology of the stress response in the early embryo and its stem cells. Adv Exp Med Biol 843:77–128

    Article  CAS  PubMed  Google Scholar 

  47. Warkus EL, Yuen AA, Lau CG, Marikawa Y (2016) Use of in vitro morphogenesis of mouse embryoid bodies to assess developmental toxicity of therapeutic drugs contraindicated in pregnancy. Toxicol Sci 149(1):15–30

    Article  CAS  PubMed  Google Scholar 

  48. Marikawa Y, Tamashiro DA, Fujita TC, Alarcon VB (2009) Aggregated P19 mouse embryonal carcinoma cells as a simple in vitro model to study the molecular regulations of mesoderm formation and axial elongation morphogenesis. Genesis 47(2):93–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lau CG, Marikawa Y (2014) Morphology-based mammalian stem cell tests reveal potential developmental toxicity of donepezil. Mol Reprod Dev 81(11):994–1008

    Article  CAS  PubMed  Google Scholar 

  50. Li AS, Marikawa Y (2015) An in vitro gastrulation model recapitulates the morphogenetic impact of pharmacological inhibitors of developmental signaling pathways. Mol Reprod Dev 82(12):1015–1036

    Article  CAS  PubMed  Google Scholar 

  51. Boxman J, Sagy N, Achanta S, Vadigepalli R, Nachman I (2016) Integrated live imaging and molecular profiling of embryoid bodies reveals a synchronized progression of early differentiation. Sci Rep 6:31623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  53. Cezar GG, Quam JA, Smith AM, Rosa GJ, Piekarczyk MS, Brown JF, Gage FH, Muotri AR (2007) Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev 16(6):869–882

    Article  CAS  PubMed  Google Scholar 

  54. West PR, Weir AM, Smith AM, Donley EL, Cezar GG (2010) Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 247(1):18–27

    Article  CAS  PubMed  Google Scholar 

  55. Kleinstreuer NC, Smith AM, West PR, Conard KR, Fontaine BR, Weir-Hauptman AM, Palmer JA, Knudsen TB, Dix DJ, Donley EL, Cezar GG (2011) Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 257(1):111–121

    Article  CAS  PubMed  Google Scholar 

  56. Palmer JA, Smith AM, Egnash LA, Conard KR, West PR, Burrier RE, Donley EL, Kirchner FR (2013) Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening. Birth Defects Res B Dev Reprod Toxicol 98(4):343–363

    Article  CAS  PubMed  Google Scholar 

  57. Cezar GG (2007) Can human embryonic stem cells contribute to the discovery of safer and more effective drugs? Curr Opin Chem Biol 11(4):405–409

    Article  CAS  PubMed  Google Scholar 

  58. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310

    Article  CAS  PubMed  Google Scholar 

  59. Dahm R (2002) Atlas of embryonic stages of development in the zebrafish. In: Nusslein-Volhard C, Dahm R (eds) Zebrafish: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  60. Brannen KC, Panzica-Kelly JM, Charlap JH, Augustine-Rauch KA (2009) Zebrafish: a nonmammalian model of developmental toxicology. In: Hansen DK, Abbott BD (eds) Developmental toxicology. Target organ toxicology series, 3rd edn. Informa Healthcare USA, New York, NY, pp 215–241

    Google Scholar 

  61. Brannen KC, Chapin RE, Jacobs AC, Green ML (2016) Alternative models of developmental and reproductive toxicity in pharmaceutical risk assessment and the three Rs. ILAR J (in press)

    Google Scholar 

  62. Brand M, Granato M, Nusslein-Volhard C (2002) Keeping and raising zebrafish. In: Nusslein-Volhard C, Dahm R (eds) Zebrafish: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  63. Brannen KC, Charlap JH, Lewis EM (2013) Zebrafish teratogenicity testing. In: Barrow PC (ed) Teratogenicity testing: methods and protocols, Methods in molecular biology, vol 947. Humana Press, New York, NY, pp 383–401

    Chapter  Google Scholar 

  64. Truong L, Bugel SM, Chlebowski A, Usenko CY, Simonich MT, Simonich SL, Tanguay RL (2016) Optimizing multi-dimensional high throughput screening using zebrafish. Reprod Toxicol 65:139–147. doi:10.1016/j.reprotox.2016.05.015

    Article  CAS  PubMed  Google Scholar 

  65. Garcia GR, Noyes PD, Tanguay RL (2016) Advancements in zebrafish applications for 21st century toxicology. Pharmacol Ther 161:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hermsen SA, van den Brandhof EJ, van der Ven LT, Piersma AH (2011) Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies. Toxicol In Vitro 25(3):745–753

    Article  CAS  PubMed  Google Scholar 

  67. Van den Bulck K, Hill A, Mesens N, Diekman H, De Schaepdrijver L, Lammens L (2011) Zebrafish developmental toxicity assay: a fishy solution to reproductive toxicity screening, or just a red herring? Reprod Toxicol 32(2):213–219

    Article  CAS  PubMed  Google Scholar 

  68. Padilla S, Corum D, Padnos B, Hunter DL, Beam A, Houck KA, Sipes N, Kleinstreuer N, Knudsen T, Dix DJ, Reif DM (2012) Zebrafish developmental screening of the ToxCast Phase I chemical library. Reprod Toxicol 33(2):174–187

    Article  CAS  PubMed  Google Scholar 

  69. Yamashita A, Inada H, Chihara K, Yamada T, Deguchi J, Funabashi H (2014) Improvement of the evaluation method for teratogenicity using zebrafish embryos. J Toxicol Sci 39(3):453–464

    Article  CAS  PubMed  Google Scholar 

  70. Beekhuijzen M, de Koning C, Flores-Guillen ME, de Vries-Buitenweg S, Tobor-Kaplon M, van de Waart B, Emmen H (2015) From cutting edge to guideline: a first step in harmonization of the zebrafish embryotoxicity test (ZET) by describing the most optimal test conditions and morphology scoring system. Reprod Toxicol 56:64–76

    Article  CAS  PubMed  Google Scholar 

  71. Haldi MH, Harden M, D’Amico L, DeLise A, Seng WL (2012) Developmental toxicity assessment in zebrafish. In: McGrath P (ed) Zebrafish: methods for assessing drug safety and toxicity. Wiley, Hoboken, NJ, pp 15–25

    Google Scholar 

  72. Panzica-Kelly JM, Zhang CX, Augustine-Rauch K (2012) Zebrafish embryo developmental toxicology assay. Methods Mol Biol 889:25–50. doi:10.1007/978-1-61779-867-2_4

    Article  CAS  PubMed  Google Scholar 

  73. Henn K, Braunbeck T (2011) Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 153(1):91–98

    Article  PubMed  CAS  Google Scholar 

  74. Mandrell D, Truong L, Jephson C, Sarker MR, Moore A, Lang C, Simonich MT, Tanguay RL (2012) Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom 17(1):66–74

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brox S, Ritter AP, Kuster E, Reemtsma T (2014) Influence of the perivitelline space on the quantification of internal concentrations of chemicals in eggs of zebrafish embryos (Danio rerio). Aquat Toxicol 157:134–140

    Article  CAS  PubMed  Google Scholar 

  76. Gurrola-Gal MC, Penney LC, MacDougall J, Clipston AS, Brannen KC (2014) The effects of the zebrafish chorion on the response to exogenous chemicals. Birth Defects Res A Clin Mol Teratol 100(5):404

    Google Scholar 

  77. Nagel R (2002) DarT: the embryo test with the zebrafish Danio rerio—a general model in ecotoxicology and toxicology. ALTEX 19(Suppl 1):38–48

    PubMed  Google Scholar 

  78. Sipes NS, Padilla S, Knudsen TB (2011) Zebrafish: as an integrative model for twenty-first century toxicity testing. Birth Defects Res C Embryo Today 93(3):256–267

    Article  CAS  PubMed  Google Scholar 

  79. Wager TT, Kormos BL, Brady JT, Will Y, Aleo MD, Stedman DB, Kuhn M, Chandrasekaran RY (2013) Improving the odds of success in drug discovery: choosing the best compounds for in vivo toxicology studies. J Med Chem 56(23):9771–9779. doi:10.1021/jm401485p

    Article  CAS  PubMed  Google Scholar 

  80. McGrath P, Li CQ (2008) Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today 13(9–10):394–401

    Article  CAS  PubMed  Google Scholar 

  81. Hill AJ, Jones M, Dodd A, Diekmann H (2011) A review of developmental toxicity screening using zebrafish larvae. Int J Toxicol 30(1):105

    Google Scholar 

  82. Tseng HP, Hseu TH, Buhler DR, Wang WD, Hu CH (2005) Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva. Toxicol Appl Pharmacol 205(3):247–258

    Article  CAS  PubMed  Google Scholar 

  83. Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jonsson ME, Nelson DR, Stegeman JJ (2010) Identification and developmental expression of the full complement of cytochrome P450 genes in zebrafish. BMC Genomics 11:643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Jones HS, Panter GH, Hutchinson TH, Chipman JK (2010) Oxidative and conjugative xenobiotic metabolism in zebrafish larvae in vivo. Zebrafish 7(1):23–30

    Article  CAS  PubMed  Google Scholar 

  85. Otte JC, Schmidt AD, Hollert H, Braunbeck T (2010) Spatio-temporal development of CYP1 activity in early life-stages of zebrafish (Danio rerio). Aquat Toxicol 100(1):38–50

    Article  CAS  PubMed  Google Scholar 

  86. Weigt S, Huebler N, Braunbeck T, von Landenberg F, Broschard TH (2010) Zebrafish teratogenicity test with metabolic activation (mDarT): effects of phase I activation of acetaminophen on zebrafish Danio rerio embryos. Toxicology 275(1–3):36–49

    Article  CAS  PubMed  Google Scholar 

  87. Busquet F, Nagel R, von Landenberg F, Mueller SO, Huebler N, Broschard TH (2008) Development of a new screening assay to identify proteratogenic substances using zebrafish Danio rerio embryo combined with an exogenous mammalian metabolic activation system (mDarT). Toxicol Sci 104(1):177–188

    Article  CAS  PubMed  Google Scholar 

  88. Kalueff A, Cachat J (2011) Zebrafish models in neurobehavioral research. In: Neuromethods, vol 52. Humana Press, New York, NY

    Google Scholar 

  89. Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T (2015) Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom (Kyoto) 55(1):1–16

    Article  CAS  Google Scholar 

  90. MacRae CA, Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov. doi:10.1038/nrd4627

    PubMed  Google Scholar 

  91. Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007) A fully automated robotic system for microinjection of zebrafish embryos. PLoS One 2(9):e862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Noori A, Selvaganapathy PR, Wilson J (2009) Microinjection in a microfluidic format using flexible and compliant channels and electroosmotic dosage control. Lab Chip 9(22):3202–3211

    Article  CAS  PubMed  Google Scholar 

  93. Augustine-Rauch K, Zhang CX, Panzica-Kelly JM (2016) A developmental toxicology assay platform for screening teratogenic liability of pharmaceutical compounds. Birth Defects Res B Dev Reprod Toxicol. doi:10.1002/bdrb.21168

    PubMed  Google Scholar 

  94. Pardo-Martin C, Allalou A, Medina J, Eimon PM, Wahlby C, Fatih Yanik M (2013) High-throughput hyperdimensional vertebrate phenotyping. Nat Commun 4:1467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Pardo-Martin C, Chang TY, Koo BK, Gilleland CL, Wasserman SC, Yanik MF (2010) High-throughput in vivo vertebrate screening. Nat Methods 7(8):634–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Coverdale LE, Burton LE, Martin CC (2008) High-throughput whole mount in situ hybridization of zebrafish embryos for analysis of tissue-specific gene expression changes after environmental perturbation. Methods Mol Biol 410:3–14

    Article  CAS  PubMed  Google Scholar 

  97. Walker SL, Ariga J, Mathias JR, Coothankandaswamy V, Xie X, Distel M, Koster RW, Parsons MJ, Bhalla KN, Saxena MT, Mumm JS (2012) Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish. PLoS One 7(1):e29916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang G, Rajpurohit SK, Delaspre F, Walker SL, White DT, Ceasrine A, Kuruvilla R, Li RJ, Shim JS, Liu JO, Parsons MJ, Mumm JS (2015) First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic beta-cell mass. Elife 4:e08261

    PubMed Central  Google Scholar 

  99. Gorelick DA, Halpern ME (2011) Visualization of estrogen receptor transcriptional activation in zebrafish. Endocrinology 152(7):2690–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gorelick DA, Pinto CL, Hao R, Bondesson M (2016) Use of reporter genes to analyze estrogen response: the transgenic zebrafish model. Methods Mol Biol 1366:315–325

    Article  CAS  PubMed  Google Scholar 

  101. Sandoval IT, Manos EJ, Van Wagoner RM, Delacruz RG, Edes K, Winge DR, Ireland CM, Jones DA (2013) Juxtaposition of chemical and mutation-induced developmental defects in zebrafish reveal a copper-chelating activity for kalihinol F. Chem Biol 20(6):753–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ruzicka L, Bradford YM, Frazer K, Howe DG, Paddock H, Ramachandran S, Singer A, Toro S, Van Slyke CE, Eagle AE, Fashena D, Kalita P, Knight J, Mani P, Martin R, Moxon SA, Pich C, Schaper K, Shao X, Westerfield M (2015) ZFIN, the zebrafish model organism database: updates and new directions. Genesis 53(8):498–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang Y, Yeh JR, Mara A, Ju R, Hines JF, Cirone P, Griesbach HL, Schneider I, Slusarski DC, Holley SA, Crews CM (2006) A chemical and genetic approach to the mode of action of fumagillin. Chem Biol 13(9):1001–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gonzales AP, Yeh JR (2014) Cas9-based genome editing in zebrafish. Methods Enzymol 546:377–413

    Article  CAS  PubMed  Google Scholar 

  106. Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, Carrington B, Bishop K, Jones M, Li M, Harper U, Huang SC, Prakash A, Chen W, Sood R, Ledin J, Burgess SM (2015) High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 25(7):1030–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulis G, Male I, DeSantis DF, Sheppard-Tindell S, Ebarasi L, Betsholtz C, Schulte-Merker S, Wolfe SA, Lawson ND (2015) Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32(1):97–108

    Article  CAS  PubMed  Google Scholar 

  108. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110(34):13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maia L. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Green, M.L., Gamse, J.T., Brannen, K.C. (2016). Alternative Methods Used to Assess Potential Embryo-Fetal Developmental Risk of Pharmaceuticals. In: Faqi, A. (eds) Developmental and Reproductive Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2016_67

Download citation

  • DOI: https://doi.org/10.1007/7653_2016_67

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7206-7

  • Online ISBN: 978-1-4939-7208-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics