Skip to main content

A Developmental and Reproductive Toxicology Program for Chemical Registration

  • Protocol
  • First Online:
Book cover Developmental and Reproductive Toxicology

Abstract

The goal of the chapter is to outline the process of testing molecules for potential developmental and reproductive toxicity (DART). Here, the entire process of DART testing is discussed, from the regulatory use of DART data to the conduct and interpretation of the various DART study designs. Although non-animal DART testing strategies are envisioned by the new science of “21st Century Toxicity Testing”, these high-content, high-throughput testing paradigms are not sufficiently mature from a scientific perspective to be acceptable on their own by regulatory agencies for chemical registration. Thus, these testing paradigms are not included in this chapter. While the scope of the chapter is broad, it is beyond the range of this chapter to describe all possible scenarios encountered in DART testing. For additional information, the reader is referred to other recent publications on this topic. The chapter is organized in a stepwise manner into three main topics: (1) Use of DART studies for chemical registration; (2) General considerations for all DART study designs; and (3) Descriptions of all DART study designs from a practical perspective, beginning with an initial range-finding study and ending with the complex Extended One-Generation Reproductive Toxicity Study (EOGRTS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off J Eur Union, L396/1 of 30.12.2006. Commission of the European Communities. Available at: http://eur-lex.europa.eu/legal-content/en/TXT/PDF/?uri=CELEX:02006R1907-20160203. Accessed 4 Apr 2016

  2. European Commission (2004) Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. Available at: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:02004R1935-20090807. Accessed 4 Apr 2016

  3. Responsible Care (2015) Available from: http://www.icca-chem.org/en/Home/Responsible-care/. Cited 4 Apr 2016

  4. Provisions on Environmental Administration of New Chemical Substances (2010) M.o.E.P.o. China, Editor

    Google Scholar 

  5. Federal Insecticide, Fungicide, and Rodenticide Act (1996) (7 U.S.C. 136 et seq.)

    Google Scholar 

  6. United Nations (2015) Globally harmonized system of classification and labelling of chemicals (GHS), 6th revised edn

    Google Scholar 

  7. Sparks TC (2013) Insecticide discovery: an evaluation and analysis. Pestic Biochem Physiol 107(1):8–17

    Article  CAS  PubMed  Google Scholar 

  8. Wu S et al (2013) Framework for identifying chemicals with structural features associated with the potential to act as developmental or reproductive toxicants. Chem Res Toxicol 26(12):1840–1861

    Article  CAS  PubMed  Google Scholar 

  9. Ellis-Hutchings RG et al (2012) In vitro screening methods for developmental toxicology. In: Hood RD (ed) Developmental and reproductive toxicology. A practical approach. Informa Healthcare, New York

    Google Scholar 

  10. Palmer JA et al (2013) Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening. Birth Defects Res B Dev Reprod Toxicol 98(4):343–363

    Article  CAS  PubMed  Google Scholar 

  11. Boobis AR et al (2006) IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol 36(10):781–792

    Article  PubMed  Google Scholar 

  12. Sonich-Mullin C et al (2001) IPCS conceptual framework for evaluating a mode of action for chemical carcinogenesis. Regul Toxicol Pharmacol 34(2):146–152

    Article  CAS  PubMed  Google Scholar 

  13. Seed J et al (2005) Overview: using mode of action and life stage information to evaluate the human relevance of animal toxicity data. Crit Rev Toxicol 35(8–9):664–672

    PubMed  Google Scholar 

  14. Meek ME et al (2003) A framework for human relevance analysis of information on carcinogenic modes of action. Crit Rev Toxicol 33(6):591–653

    Article  PubMed  Google Scholar 

  15. ECHA (2014) Guidance on information requirements and chemical safety assessment, Chapter R.7c: endpoint specific guidance, version 2.0. European Chemicals Agency, Helsinki

    Google Scholar 

  16. Russell WMS, Birch RL (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  17. Terry C et al (2014) Application of a novel integrated toxicity testing strategy incorporating “3R” principles of animal research to evaluate the safety of a new agrochemical sulfoxaflor. Crit Rev Toxicol 44(Suppl 2):1–14

    Article  CAS  PubMed  Google Scholar 

  18. Saghir SA et al (2012) Assessment of diurnal systemic dose of agrochemicals in regulatory toxicity testing—an integrated approach without additional animal use. Regul Toxicol Pharmacol 63(2):321–332

    Article  CAS  PubMed  Google Scholar 

  19. Saghir SA et al (2006) Strategies to assess systemic exposure of chemicals in subchronic/chronic diet and drinking water studies. Toxicol Appl Pharmacol 211(3):245–260

    Article  CAS  PubMed  Google Scholar 

  20. Saghir SA et al (2013) Life-stage-, sex-, and dose-dependent dietary toxicokinetics and relationship to toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D) in rats: implications for toxicity test dose selection, design, and interpretation. Toxicol Sci 136(2):294–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jakubowski M, Terkel J (1985) Incidence of pup killing and parental behavior in virgin female and male rats (Rattus norvegicus): differences between Wistar and Sprague–Dawley stocks. J Comp Psychol 99(1):93–97

    Article  CAS  PubMed  Google Scholar 

  22. Creton S et al (2012) Use of toxicokinetics to support chemical evaluation: Informing high dose selection and study interpretation. Regul Toxicol Pharmacol 62(2):241–247

    Article  CAS  PubMed  Google Scholar 

  23. Jochemsen R et al (1993) Assessment of drug exposure in rat dietary studies. Xenobiotica 23(10):1145–1154

    Article  CAS  PubMed  Google Scholar 

  24. OECD (2011) Test guideline 416: Two-generation reproduction toxicity study. OECD, Paris

    Google Scholar 

  25. OECD (2011) Test guideline 443: extended one-generation reproduction toxicity study. OECD, Paris

    Google Scholar 

  26. OECD (2011) Guidance document 116 on the conduct and design of chronic toxicity and carcinogenicity studies, supporting test guidelines 451, 452 and 453. OECD, Paris

    Google Scholar 

  27. Barton HA et al (2006) The acquisition and application of absorption, distribution, metabolism, and excretion (ADME) data in agricultural chemical safety assessments. Crit Rev Toxicol 36(1):9–35

    Article  CAS  PubMed  Google Scholar 

  28. Bessems JG, Geraets L (2013) Proper knowledge on toxicokinetics improves human hazard testing and subsequent health risk characterisation. A case study approach. Regul Toxicol Pharmacol 67(3):325–334

    Article  CAS  PubMed  Google Scholar 

  29. Marty MS et al (2013) An F1-Extended One-Generation Reproductive Toxicity Study in Crl:CD(SD) rats with 2,4-dichlorophenoxyacetic acid. Toxicol Sci 136(2):527–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gidenne T, Lebas F, Fortun-Lamothe L (2010) Feeding behavior of rabbits. In: de Blas C, Wiseman J (eds) Nutrition of the rabbit. The Centre for Agriculture and Bioscience International, pp 233–254

    Google Scholar 

  31. Kopf R, Lorenz D, Salewski E (1964) Naunyn Schmiedebergs [The effect of thalidomide on the fertility of rats in reproduction experiments over 2 generations]. Arch Exp Pathol Pharmakol 247:121–135

    Article  CAS  Google Scholar 

  32. Wilson JG (1953) Influence of severe hemorrhagic anemia during pregnancy on development of the offspring in the rat. Proc Soc Exp Biol Med 84(1):66–69

    Article  CAS  PubMed  Google Scholar 

  33. Aliverti V et al (1979) The extent of fetal ossification as an index of delayed development in teratogenic studies on the rat. Teratology 20(2):237–242

    Article  CAS  PubMed  Google Scholar 

  34. Glockner R, Schwarz S, Jahne F (1991) Simple methods for the characterization of skeletal development of rat pups during the perinatal period as a parameter of maturity. Anat Anz 173(4):209–214

    CAS  PubMed  Google Scholar 

  35. Staples R (1974) Detection of visceral alterations in mammalian fetuses. Teratology 9:37

    Article  Google Scholar 

  36. Wilson J (1965) Embryological considerations in teratology. In: Warkany J, Wilson JG (eds) Teratology: principles and techniques. University of Chicago Press, Chicago, p 251

    Google Scholar 

  37. Kang YJ, Zolna L, Manson JM (1986) Strain differences in response of Sprague–Dawley and Long Evans Hooded rats to the teratogen nitrofen. Teratology 34(2):213–223

    Article  CAS  PubMed  Google Scholar 

  38. Tyl R, Marr M (2012) Developmental toxicity testing-methodology. In: Hood R (ed) Developmental and reproductive toxicology: a practical approach, 3rd edn. Informa Healthcare, London and New York, p 167

    Google Scholar 

  39. Stuckhardt JL, Poppe SM (1984) Fresh visceral examination of rat and rabbit fetuses used in teratogenicity testing. Teratog Carcinog Mutagen 4(2):181–188

    Article  CAS  PubMed  Google Scholar 

  40. Trueman D, Jackson SW, Trueman B (1999) An automated technique for double staining rat and rabbit fetal skeletal specimens to differentiate bone and cartilage. Biotech Histochem 74:98–104

    Article  CAS  PubMed  Google Scholar 

  41. Zablotny C (2002) Thermo Shandon's Pathcentre: a tissue processor or a teratology processor? Lab Reader Thermo Shandon, pp 1–3

    Google Scholar 

  42. Dawson A (1926) A note on staining of the skeleton of cleared specimens with Alizarin Red-S. Stain Tech 1:1–21

    Article  Google Scholar 

  43. US EPA (1991) Guidelines for developmental toxicity risk assessment. In: Register F (ed), vol 56

    Google Scholar 

  44. Beyer BK et al (2011) ILSI/HESI maternal toxicity workshop summary: maternal toxicity and its impact on study design and data interpretation. Birth Defects Res B Dev Reprod Toxicol 92(1):36–51

    Article  CAS  PubMed  Google Scholar 

  45. Giavini E, Menegola E (2012) The problem of maternal toxicity in developmental toxicity studies. Regul Toxicol Pharmacol 62(3):568–570

    Article  CAS  PubMed  Google Scholar 

  46. ECHA (2013) Guidance on the application of the CLP criteria

    Google Scholar 

  47. Carney EW et al (2004) The effects of feed restriction during in utero and postnatal development in rats. Toxicol Sci 82(1):237–249

    Article  CAS  PubMed  Google Scholar 

  48. Fleeman TL et al (2005) The effects of feed restriction during organogenesis on embryo-fetal development in the rat. Birth Defects Res B Dev Reprod Toxicol 74(5):442–449

    Article  CAS  PubMed  Google Scholar 

  49. Garofano A, Czernichow P, Breant B (1998) Postnatal somatic growth and insulin contents in moderate or severe intrauterine growth retardation in the rat. Biol Neonate 73(2):89–98

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Y et al (2010) Effects of maternal food restriction on physical growth and neurobehavior in newborn Wistar rats. Brain Res Bull 83(1–2):1–8

    PubMed  Google Scholar 

  51. Carney EW, Kimmel CA (2007) Interpretation of skeletal variations for human risk assessment: delayed ossification and wavy ribs. Birth Defects Res B Dev Reprod Toxicol 80(6):473–496

    Article  CAS  PubMed  Google Scholar 

  52. Tyl RW (2012) Commentary on the role of maternal toxicity on developmental toxicity. Birth Defects Res B Dev Reprod Toxicol 95(3):262–266

    Article  CAS  PubMed  Google Scholar 

  53. Daston GP, Seed J (2007) Skeletal malformations and variations in developmental toxicity studies: interpretation issues for human risk assessment. Birth Defects Res B Dev Reprod Toxicol 80(6):421–424

    Article  CAS  PubMed  Google Scholar 

  54. Collins TF et al (1987) Potential reversibility of skeletal effects in rats exposed in utero to caffeine. Food Chem Toxicol 25(9):647–662

    Article  CAS  PubMed  Google Scholar 

  55. Marr MC et al (1992) Developmental stages of the CD (Sprague–Dawley) rat skeleton after maternal exposure to ethylene glycol. Teratology 46(2):169–181

    Article  CAS  PubMed  Google Scholar 

  56. Wilson GN, Howe M, Stover JM (1985) Delayed developmental sequences in rodent diabetic embryopathy. Pediatr Res 19(12):1337–1340

    Article  CAS  PubMed  Google Scholar 

  57. Reuter U et al (2003) Evaluation of OECD screening tests 421 (reproduction/developmental toxicity screening test) and 422 (combined repeated dose toxicity study with the reproduction/developmental toxicity screening test). Regul Toxicol Pharmacol 38(1):17–26

    Article  CAS  PubMed  Google Scholar 

  58. Takayama S et al (1995) A collaborative study in Japan on optimal treatment period and parameters for detection of male fertility disorders induced by drugs in rats. J Am Coll Toxicol 14:266–292

    Article  CAS  Google Scholar 

  59. Ulbrich B, Palmer AK (1995) Detection of effects on male reproduction-a literature survey. J Am Coll Toxicol 14:293–327

    Article  CAS  Google Scholar 

  60. Cooper KJ, Haynes NB, Lamming GE (1970) Effects of unrestricted feeding during oestrus on reproduction in the underfed female rat. J Reprod Fertil 22(2):293–301

    Article  CAS  PubMed  Google Scholar 

  61. Piacsek BE, Meites J (1967) Reinitiation of gonadotropin release in underfed rats by constant light or epinephrine. Endocrinology 81(3):535–541

    Article  CAS  PubMed  Google Scholar 

  62. Sterin AB et al (1983) In vitro contractile responses of the uterus from 'restricted diet' rats to adrenoceptor agonists. Influence of cyclo-oxygenase inhibitors. Eur J Pharmacol 90(4):411–417

    Article  CAS  PubMed  Google Scholar 

  63. Tropp J, Markus EJ (2001) Effects of mild food deprivation on the estrous cycle of rats. Physiol Behav 73(4):553–559

    Article  CAS  PubMed  Google Scholar 

  64. Goldey ES et al (1995) Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol Appl Pharmacol 135(1):77–88

    Article  CAS  PubMed  Google Scholar 

  65. Zoeller RT, Crofton KM (2000) Thyroid hormone action in fetal brain development and potential for disruption by environmental chemicals. Neurotoxicology 21(6):935–945

    CAS  PubMed  Google Scholar 

  66. Tan SW, Zoeller RT (2007) Integrating basic research on thyroid hormone action into screening and testing programs for thyroid disruptors. Crit Rev Toxicol 37(1–2):5–10

    Article  CAS  PubMed  Google Scholar 

  67. Bowman CJ et al (2003) Effects of in utero exposure to finasteride on androgen-dependent reproductive development in the male rat. Toxicol Sci 74(2):393–406

    Article  CAS  PubMed  Google Scholar 

  68. Macleod DJ et al (2010) Androgen action in the masculinization programming window and development of male reproductive organs. Int J Androl 33(2):279–287

    Article  CAS  PubMed  Google Scholar 

  69. McIntyre BS, Barlow NJ, Foster PM (2001) Androgen-mediated development in male rat offspring exposed to flutamide in utero: permanence and correlation of early postnatal changes in anogenital distance and nipple retention with malformations in androgen-dependent tissues. Toxicol Sci 62(2):236–249

    Article  CAS  PubMed  Google Scholar 

  70. Welsh M et al (2010) Critical androgen-sensitive periods of rat penis and clitoris development. Int J Androl 33(1):e144–e152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goldman AS, Shapiro B, Neumann F (1976) Role of testosterone and its metabolites in the differentiation of the mammary gland in rats. Endocrinology 99(6):1490–1495

    Article  CAS  PubMed  Google Scholar 

  72. Topper YJ, Freeman CS (1980) Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 60(4):1049–1106

    CAS  PubMed  Google Scholar 

  73. Imperato-McGinley J et al (1986) Nipple differentiation in fetal male rats treated with an inhibitor of the enzyme 5 alpha-reductase: definition of a selective role for dihydrotestosterone. Endocrinology 118(1):132–137

    Article  CAS  PubMed  Google Scholar 

  74. Imperato-McGinley J et al (1992) Comparison of the effects of the 5 alpha-reductase inhibitor finasteride and the antiandrogen flutamide on prostate and genital differentiation: dose–response studies. Endocrinology 131(3):1149–1156

    Article  CAS  PubMed  Google Scholar 

  75. Wolf CJ et al (2002) Effects of prenatal testosterone propionate on the sexual development of male and female rats: a dose–response study. Toxicol Sci 65(1):71–86

    Article  CAS  PubMed  Google Scholar 

  76. McIntyre BS, Barlow NJ, Foster PM (2002) Male rats exposed to linuron in utero exhibit permanent changes in anogenital distance, nipple retention, and epididymal malformations that result in subsequent testicular atrophy. Toxicol Sci 65(1):62–70

    Article  CAS  PubMed  Google Scholar 

  77. Parker R (2012) Reproductive toxicity testing-methodology. In: Hood RD (ed) Developmental and reproductive toxicology: a practical approach, 3rd edn. Informa Healthcare, London and New York, pp 184–221

    Google Scholar 

  78. Gallavan RH Jr et al (1999) Interpreting the toxicologic significance of alterations in anogenital distance: potential for confounding effects of progeny body weights. Reprod Toxicol 13(5):383–390

    Article  CAS  PubMed  Google Scholar 

  79. Stoker TE et al (2000) Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee. Crit Rev Toxicol 30(2):197–252

    Article  CAS  PubMed  Google Scholar 

  80. Clark RL (1999) Endpoints of reproductive system development. In: Daston GP, Kimmel CA (eds) An evaluation and interpretation of reproductive endpoint for human risk assessment. International Life Sciences Institute, Health and Environmental Science Institute, Washington, DC, pp 27–62

    Google Scholar 

  81. Ashby J, Lefevre PA (2000) The peripubertal male rat assay as an alternative to the Hershberger castrated male rat assay for the detection of anti-androgens, oestrogens and metabolic modulators. J Appl Toxicol 20(1):35–47

    Article  CAS  PubMed  Google Scholar 

  82. Marty MS, Johnson KA, Carney EW (2003) Effect of feed restriction on Hershberger and pubertal male assay endpoints. Birth Defects Res B Dev Reprod Toxicol 68(4):363–374

    Article  CAS  PubMed  Google Scholar 

  83. European Commission, European Commission Regulation (EU) 2015/282 amending Annexes VIII, IX and X to Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards the Extended One-Generation Reproductive Toxicity Study. Available at: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2015.050.01.0001.01.ENG. Accessed 18 Nov 2015

  84. ECHA (2015) European Chemicals Agency. Guidance on information requirements and chemical safety assessment—Chapter R.7a: endpoint specific guidance, version 4.1, October 2015. ISBN: 978-92-9247-411-9 Available at: http://echa.europa.eu/documents/10162/13632/information_requirements_r7a_en.pdf. Accessed 18 Nov 2015

  85. Stevens KR, Gallo MA (1982) Practical considerations in the conduct of chronic toxicity studies. In: Hayes AW (ed) Principles and methods of toxicology. Raven, New York, p 62

    Google Scholar 

  86. Anisimov VN et al (2012) Light-at-night-induced circadian disruption, cancer and aging. Curr Aging Sci 5(3):170–177

    Article  PubMed  Google Scholar 

  87. Flint AP et al (1986) The effect of day length on the duration of pregnancy and the onset of parturition in the rat. Q J Exp Physiol 71(2):285–293

    Article  CAS  PubMed  Google Scholar 

  88. Gozeri E et al (2008) The effect of circadian rhythm changes on fetal and placental development (experimental study). Neuro Endocrinol Lett 29(1):87–90

    PubMed  Google Scholar 

  89. Varcoe TJ et al (2011) Chronic phase shifts of the photoperiod throughout pregnancy programs glucose intolerance and insulin resistance in the rat. PLoS One 6(4):e18504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cooper RL et al (2006) A tiered approach to life stages testing for agricultural chemical safety assessment. Crit Rev Toxicol 36(1):69–98

    Article  CAS  PubMed  Google Scholar 

  91. Chapin RE, Sloane RA, Haseman JK (1997) The relationships among reproductive endpoints in Swiss mice, using the reproductive assessment by Continuous Breeding database. Fundam Appl Toxicol 38(2):129–142

    Article  CAS  PubMed  Google Scholar 

  92. Gray L et al (1989) Correlation of sperm and endocrine measures with reproductive success in rodents. In: Burger EJ (ed) Progress in clinical and biological research. Liss, New York, pp 193–209

    Google Scholar 

  93. Mangelsdorf I, Buschmann J, Orthen B (2003) Some aspects relating to the evaluation of the effects of chemicals on male fertility. Regul Toxicol Pharmacol 37(3):356–369

    Article  CAS  PubMed  Google Scholar 

  94. Hirshfield AN (1987) Histological assessment of follicular development and its applicability to risk assessment. Reprod Toxicol 1(1):71–79

    Article  CAS  PubMed  Google Scholar 

  95. Regan KS et al (2005) STP position paper: ovarian follicular counting in the assessment of rodent reproductive toxicity. Toxicol Pathol 33(3):409–412

    Article  CAS  PubMed  Google Scholar 

  96. OECD (2011) Guidance document on the current implementation of internal triggers in the extended one generation reproductive toxicity study in the United States and Canada, Series on Testing and Assessment, No. 117, ENV/JM/MONO(2011)21, Paris

    Google Scholar 

  97. Piersma AH et al (2011) Combined retrospective analysis of 498 rat multi-generation reproductive toxicity studies: on the impact of parameters related to F1 mating and F2 offspring. Reprod Toxicol 31(4):392–401

    Article  CAS  PubMed  Google Scholar 

  98. Fegert I et al (2012) Feasibility of the Extended One-Generation Reproductive Toxicity Study (OECD 443). Reprod Toxicol 34(3):331–339

    Article  CAS  PubMed  Google Scholar 

  99. Tonk EC et al (2013) Developmental immunotoxicity of ethanol in an Extended One-Generation Reproductive Toxicity Study. Arch Toxicol 87(2):323–335

    Article  CAS  PubMed  Google Scholar 

  100. Marty MS et al (2009) Inter-laboratory control data for reproductive endpoints required in the OPPTS 870.3800/OECD 416 reproduction and fertility test. Birth Defects Res B Dev Reprod Toxicol 86(6):470–489

    Article  CAS  PubMed  Google Scholar 

  101. Stump DG et al (2014) Key lessons from performance of the U.S. EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 male and female pubertal assays. Birth Defects Res B Dev Reprod Toxicol 101(1):43–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mazzocchi G et al (1980) An ultrastructural stereologic study of the effects of angiotensin II on the zona glomerulosa of rat adrenal cortex. Acta Endocrinol (Copenh) 95(4):523–527

    CAS  Google Scholar 

  103. Otis M et al (2007) The growth-promoting effects of angiotensin II in adrenal glomerulosa cells: an interactive tale. Mol Cell Endocrinol 273(1–2):1–5

    Article  CAS  PubMed  Google Scholar 

  104. United Nations (2007) Globally harmonized system of classification and labelling of chemicals (GHS). Part 3 Health Hazards

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Lynea Murphy for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamin J. Johnson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Johnson, K.J. et al. (2016). A Developmental and Reproductive Toxicology Program for Chemical Registration. In: Faqi, A. (eds) Developmental and Reproductive Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2016_65

Download citation

  • DOI: https://doi.org/10.1007/7653_2016_65

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7206-7

  • Online ISBN: 978-1-4939-7208-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics