Integrin αvβ3-Targeted Optical Imaging with Metal Oxide Nanomaterials: Focusing on Zinc Oxide

Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Integrin αvβ3 is one of the most important factors during angiogenesis (i.e., the formation of new vasculature). To fully elucidate its role in different pathological process, a tool which can visualize its distribution profile and/or fluctuation will be of great value. Metal oxide nanomaterials, with unique physical properties and versatile biological applications, can be suitable candidates for this type of application. Among all the metal oxide nanomaterials, zinc oxide (ZnO) has different forms of nanostructures and possesses several distinct advantages including tunable luminescence, good biocompatibility, low cytotoxicity, and versatile chemical reaction capacity with different molecules. Based on all these properties, ZnO nanomaterials can serve as a useful platform especially as an imaging tool for studying integrin αvβ3 in cells. With further optimization, these ZnO nanomaterials can be attractive alternatives for image-guided drug delivery applications via integrin αvβ3-mediated pathways. This chapter provides detailed protocols of how to produce luminescent ZnO nanomaterials (e.g., nanowires or nanoparticles) and use them at the cellular level for optical imaging of integrin αvβ3.

Keywords

Integrin αvβ3 Fluorescence ZnO nanomaterials Angiogenesis Cancer targeting 

References

  1. 1.
    Hong H, Chen F, Zhang Y, Cai W (2014) New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 76:2–20CrossRefPubMedGoogle Scholar
  2. 2.
    Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cox D, Brennan M, Moran N (2010) Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 9:804–820CrossRefPubMedGoogle Scholar
  4. 4.
    Cai W, Niu G, Chen X (2008) Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14:2943–2973CrossRefPubMedGoogle Scholar
  5. 5.
    Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113s–128sCrossRefPubMedGoogle Scholar
  6. 6.
    Hsu AR, Veeravagu A, Cai W, Hou LC, Tse V, Chen X (2007) Integrin alpha v beta 3 antagonists for anti-angiogenic cancer treatment. Recent Pat Anticancer Drug Discov 2:143–158PubMedGoogle Scholar
  7. 7.
    Doss M, Kolb HC, Zhang JJ, Belanger MJ, Stubbs JB, Stabin MG, Hostetler ED, Alpaugh RK, von Mehren M, Walsh JC, Haka M, Mocharla VP, Yu JQ (2012) Biodistribution and radiation dosimetry of the integrin marker 18F-RGD-K5 determined from whole-body PET/CT in monkeys and humans. J Nucl Med 53:787–795CrossRefPubMedGoogle Scholar
  8. 8.
    Wan W, Guo N, Pan D, Yu C, Weng Y, Luo S, Ding H, Xu Y, Wang L, Lang L, Xie Q, Yang M, Chen X (2013) First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med 54:691–698CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pysz MA, Gambhir SS, Willmann JK (2010) Molecular imaging: current status and emerging strategies. Clin Radiol 65:500–516CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gioux S, Choi HS, Frangioni JV (2010) Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 9:237–255CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cao J, Wan S, Tian J, Li S, Deng D, Qian Z, Gu Y (2012) Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis. Contrast Media Mol Imaging 7:390–402CrossRefPubMedGoogle Scholar
  12. 12.
    von Wallbrunn A, Holtke C, Zuhlsdorf M, Heindel W, Schafers M, Bremer C (2007) In vivo imaging of integrin alpha v beta 3 expression using fluorescence-mediated tomography. Eur J Nucl Med Mol Imaging 34:745–754CrossRefGoogle Scholar
  13. 13.
    Cai W, Chen K, Li ZB, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48:1862–1870CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl 44:278–284CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li G, Tang Z (2014) Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective. Nanoscale 6:3995–4011CrossRefGoogle Scholar
  16. 16.
    Mohandas G, Oskolkov N, McMahon MT, Walczak P, Janowski M (2014) Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiol Exp (Wars) 74:188–196Google Scholar
  17. 17.
    Gautier J, Allard-Vannier E, Herve-Aubert K, Souce M, Chourpa I (2013) Design strategies of hybrid metallic nanoparticles for theragnostic applications. Nanotechnology 24:432002CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yen SK, Padmanabhan P, Selvan ST (2013) Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3:986–1003CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gao W, Ji L, Li L, Cui G, Xu K, Li P, Tang B (2012) Bifunctional combined Au-Fe(2)O(3) nanoparticles for induction of cancer cell-specific apoptosis and real-time imaging. Biomaterials 33:3710–3718CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13:1633–1645CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5:1561–1573CrossRefPubMedGoogle Scholar
  22. 22.
    Kumar N, Srivastava AK, Nath R, Gupta BK, Varma GD (2014) Probing the highly efficient room temperature ammonia gas sensing properties of a luminescent ZnO nanowire array prepared via an AAO-assisted template route. Dalton Trans 43:5713–5720CrossRefPubMedGoogle Scholar
  23. 23.
    Hong H, Shi J, Yang Y, Zhang Y, Engle JW, Nickles RJ, Wang X, Cai W (2011) Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett 11:3744–3750CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shi J, Hong H, Ding Y, Yang Y, Cai W, Wang X (2011) Evolution of zinc oxide nanostructures through kinetics control. J Mater Chem 21:9000–9008CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liu D, Wu W, Qiu Y, Yang S, Xiao S, Wang QQ, Ding L, Wang J (2008) Surface functionalization of ZnO nanotetrapods with photoactive and electroactive organic monolayers. Langmuir 24:5052–5059CrossRefPubMedGoogle Scholar
  26. 26.
    Hong H, Wang F, Zhang Y, Graves SA, Eddine SB, Yang Y, Theuer CP, Nickles RJ, Wang X, Cai W (2015) Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS Appl Mater Interfaces 7:3373–3381CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676CrossRefPubMedGoogle Scholar
  28. 28.
    Pan ZY, Liang J, Zheng ZZ, Wang HH, Xiong HM (2011) The application of ZnO luminescent nanoparticles in labeling mice. Contrast Media Mol Imaging 6:328–330CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of Michigan Health SystemsAnn ArborUSA
  2. 2.Department of Radiology and Medical Physics, School of Medicine and Public HealthUniversity of Wisconsin - MadisonMadisonUSA
  3. 3.University of Wisconsin Carbone Cancer CenterMadisonUSA

Personalised recommendations