Skip to main content

Critical Periods of Development in Teratology

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Several years ago Wilson (1973) postulated his principles of teratogenesis, which have been revisited previously. However, there is a strong need to evaluate critically and summarize recent advances in the area of susceptible periods in teratology. This review focused on three model teratogens, namely ionizing radiation, congenital rubella, and retinoids. Continued presence of rubella virus in the placental and fetal tissues suggests an extended period of susceptibility to abnormalities of lens and otocyst differentiation beyond the narrow window of embryonic period. The currently understood critical period for maternal radiation exposure-related microcephaly in the offspring has been derived from Hiroshima and Nagasaki experience. Data on pregnancy complications of radiation-exposed childhood cancer survivors is alarming. Cumulative use of diagnostic CT imaging and the associated ionizing radiation burden are reported to have a lifetime attributable cancer risk. This coupled with experimental data on radiation effect on neurogenesis in the cerebellum and that on global gliogenesis in the CNS is a reason to revisit the critical period definition for microcephaly in the offspring of mothers exposed to radiation. Both retinoic acid and valproic acid studies in experimental animals have demonstrated unequivocal evidence for the existence of more than one susceptible period for skeletal defects and cleft palate. It is important to realize the distinction between the “critical period for a malformation” and the “critical period for an organ as a whole.” Vascular disruption and post-closure neural tube defects have been observed to occur far beyond the embryonic period of development. It is now clear that the textbook description of the embryonic period as the window of susceptible period is rift with problems. In the light of newer advances in teratology, a second look at our definition of teratogenic manifestations and sophistication of methods of ascertainment of abnormal development will help us develop effective preventative strategies in the field of birth defects.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. http://www.cdc.gov/ncbddd/birthdefects/infographic.html

  2. Dolk H, Loane M, Garne E (2010) The prevalence of congenital anomalies in Europe. Adv Exp Med Biol 686:349–364

    Article  PubMed  Google Scholar 

  3. Ambe JP, Madziga AG, Akpede GO, Mava Y (2010) Pattern and outcome of congenital malformations in newborn babies in a Nigerian teaching hospital. West Afr J Med 29(1):24–29

    CAS  PubMed  Google Scholar 

  4. http://www.eurocat-network.eu

  5. Yi Y, Lindemann M, Colligs A, Snowball C (2011) Economic burden of neural tube defects and impact of prevention with folic acid: a literature review. Eur J Pediatr 170(11):1391–1400

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lo A, Polsek D, Siddu S (2014) Estimating the burden of neural tube defects in low- and middle-income countries. J Glob Health 4(1):010402. doi:10.7189/jogh.04.010402

    Article  PubMed  PubMed Central  Google Scholar 

  7. Colombo GL, Di Matteo S, Vinci M, Gatti C, Pascali MP, De Gennaro M, Macrellino E, Mosiello G, Redaelli T, Schioppa F, Dieci C (2013) A cost-of-illness study of spina bifida in Italy. Clinicoecon Outcomes Res 5:309–316

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hertrampf E, Cortes F (2008) National food fortification program with folic acid in Chile. Food Nutr Bull 29(2 Suppl):S231–S237

    Article  PubMed  Google Scholar 

  9. Mosher WD, Jones J, Abma JC (2012) Intended and unintended births in the United States: 1982–2010. Natl Health Stat Report 55:1–28

    Google Scholar 

  10. Huynh L, McCoy M, Law A, Tran KN, Knuth S, Lefebvre P, Sullivan S, Duh MS (2013) Systematic literature review of the costs of pregnancy in the US. Pharmacoeconomics 31(11):1005–1030

    Article  PubMed  Google Scholar 

  11. Rabovskaja V, Parkinson B, Goodall S (2013) The cost-effectiveness of mandatory folic acid fortification in Australia. J Nutr 143(1):59–66

    Article  CAS  PubMed  Google Scholar 

  12. Honein MA, Devine O, Grosse SD, Reefhuis J (2014) Prevention of orofacial clefts caused by smoking: implications of the Surgeon General’s report. Birth Defects Res A Clin Mol Teratol. doi:10.1002/bdra.23274

    Google Scholar 

  13. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, Vera Garcia C, Rohde S, Say L, Lawn JE (2012) National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379(9832):2162–2172

    Article  PubMed  Google Scholar 

  14. Bortolus R, Blom F, Filippini F, van Poppel MN, Leoncini E, de Smit DJ, Benetollo PP, Cornel MC, de Walle HE, Mastroiacovo P (2014) Italian and Dutch folic acid trial study groups. Prevention of congenital malformations and other adverse pregnancy outcomes with 4.0 mg of folic acid: community-based randomized clinical trial in Italy and the Netherlands. BMC Pregnancy Childbirth 14:166. doi:10.1186/1471-2393-14-166

    Article  PubMed  PubMed Central  Google Scholar 

  15. Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller AB, Kinney M, Lawn J, Born Too Soon Preterm Birth Action Group (2013) Born too soon. The global epidemiology of 15 million preterm births. Reprod Health 10(Suppl 1):S2. doi:10.1186/1742-4755-10-S1-S2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Melve KK, Skjaerven R (2002) Families with birth defects: is birth weight of nonmalformed siblings affected? Am J Epidemiol 155(10):932–940

    Article  PubMed  Google Scholar 

  17. Bulkowski R (2010) Stillbirth and fetal growth restriction. Clin Obstet Gynecol 53(3):673–680

    Article  Google Scholar 

  18. de Onis M, Blossner M, Villar J (1998) Levels and patterns of intrauterine growth retardation in developing countries. Eur J Clin Nutr 52(Suppl):S5–S15

    PubMed  Google Scholar 

  19. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359(1):61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gluckman PD, Hanson MA (2008) Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes (Lond) 32(Suppl 7):S62–S71

    Article  CAS  Google Scholar 

  21. Fall CH (2013) Fetal programming and the risk of noncommunicable disease. Indian J Pediatr 80(Suppl 1):S13–S20

    Article  PubMed  Google Scholar 

  22. Fall CH (2013) Fetal malnutrition and long-term outcomes. Nestle Nutr Inst Workshop Ser 74:11–25, Epub 2013 Jul 18

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wilson JG (1973) Environment and birth defects. Academic, New York

    Google Scholar 

  24. Jelínek R (2005) The contribution of new findings and ideas to the old principles of teratology. Reprod Toxicol 20(3):295–300

    Article  PubMed  CAS  Google Scholar 

  25. Charon P (2004) Etienne Geoffroy Saint-Hilaire (1772–1844) and anencephaly: contribution of one naturalist to medical knowledge. Hist Sci Med 38(3):365–383

    PubMed  Google Scholar 

  26. https://archive.org/details/Geoffroy-Saint-Hilaire1832xs96J-c.

  27. Dareste C (1877) Recherches sur la production artificielle des monstruosités: ou, Essais de tératogénie expérimentale [Research on the artificial production of monstrosities, or experimental teratogenicity testing]. C. Reinwald, Paris, http://www.biodiversitylibrary.org/item/99425#page/48/mode/1up

    Google Scholar 

  28. Stockard CR (1921) Developmental rate and structural expression: an experimental study of twins, double monsters and single deformities, and the interaction among embryonic organs during their origin and development. Am J Anat 28:115–227

    Article  Google Scholar 

  29. Ujházy E, Mach M, Navarová J, Brucknerová I, Dubovický M (2012) Teratology—past, present and future. Interdiscip Toxicol 5(4):163–168

    Article  PubMed  PubMed Central  Google Scholar 

  30. http://www.slideshare.net/khushnood18/biographical-encyclopedia-of-scientists-3rd-ed-malestrom

  31. Lenz W (1985) Thalidomide embryopathy in Germany, 1959–1961. Prog Clin Biol Res 163C:77–83

    CAS  PubMed  Google Scholar 

  32. Lenz W (1988) A short history of thalidomide embryopathy. Teratology 38(3):203–215

    Article  CAS  PubMed  Google Scholar 

  33. Williams PM, Fletcher S (2010) Health effects of prenatal radiation exposure. Am Fam Physician 82(5):488–493

    PubMed  Google Scholar 

  34. Jelínek R (1988) The principles of teratogenesis revisited. Congenit Anom 28:S145–S155

    Article  Google Scholar 

  35. Friedman JM (2010) The principles of teratology: are they still true? Birth Defects Res A Clin Mol Teratol 88(10):766–768

    Article  CAS  PubMed  Google Scholar 

  36. Holliday R (1998) The possibility of epigenetic transmission of defects induced by teratogens. Mutat Res 422(2):203–205

    Article  CAS  PubMed  Google Scholar 

  37. Ema M, Ise R, Kato H, Oneda S, Hirose A, Hirata-Koizumi M, Singh AV, Knudsen TB, Ihara T (2010) Fetal malformations and early embryonic gene expression response in cynomolgus monkeys maternally exposed to thalidomide. Reprod Toxicol 29(1):49–56

    Article  CAS  PubMed  Google Scholar 

  38. Wilson JG (1959) Experimental studies on congenital malformations. J Chronic Dis 10:111–130

    Article  CAS  PubMed  Google Scholar 

  39. Stockard CR (1928) Present status of the problem of the so-called rejuvenation. Bull N Y Acad Med 4(12):1241–1249

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Goldstein L, Murphy DP (1929) Microcephalic idiocy following radium therapy for uterine cancer during pregnancy. Am J Obstet Gynecol 18:189–195, 289–3

    Article  Google Scholar 

  41. Goldstein L, Murphy DP (1929) Etiology of ill health in children born after maternal pelvic irradiation. Part 11. Defective children born after postconceptional maternal irradiation. Am J Roentgenol 22:322–331

    Google Scholar 

  42. Doll R (1995) Hazards of ionizing radiation: 100 years of observation on man. Br J Cancer 72(6):1339–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Plummer G (1952) Anomalies occurring in children exposed in utero to atomic bomb in Hiroshima. Pediatrics 10(6):687–693

    CAS  PubMed  Google Scholar 

  44. Dekaban AS (1968) Abnormalities in children exposed to X radiation during various stages of gestation: tentative timetable of radiation injury to the human fetus I. J Nucl Med 9(9):471–477

    CAS  PubMed  Google Scholar 

  45. Otake M, Schull WJ, Yoshimaru H (1991) A review of forty-five years study of Hiroshima and Nagasaki atomic bomb survivors. Brain damage among the prenatally exposed. J Radiat Res 32(Suppl):249–264

    Article  PubMed  Google Scholar 

  46. Hall EJ (1991) Scientific view of low-level radiation risks. Radiographics 11(3):509

    Article  CAS  PubMed  Google Scholar 

  47. De Santis M, Di Gianantonio E, Straface G, Cavaliere AF, Caruso A, Schiavon F, Berletti R, Clementi M (2005) Ionizing radiations in pregnancy and teratogenesis: a review of literature. Reprod Toxicol 20(3):323–329

    Article  PubMed  CAS  Google Scholar 

  48. Schull WJ, Otake M (1999) Cognitive function and prenatal exposure to ionizing radiation. Teratology 59:222–226

    Article  CAS  PubMed  Google Scholar 

  49. Dobbing J (1974) The later growth of the brain and its vulnerability. Pediatrics 53(1):2–6

    CAS  PubMed  Google Scholar 

  50. Janeczko K, Setkowicz Z, Fraczek M, Kochowska J (1999) Effects of prenatal gamma-irradiation on postnatal astrogliogenesis in the hippocampal formation of rat. Brain Res 816(2):628–632

    Article  CAS  PubMed  Google Scholar 

  51. Bruni JE, Persaud TV, Huang W, Froese G (1993) Postnatal development of the rat CNS following in utero exposure to a low dose of ionizing radiation. Exp Toxicol Pathol 45(4):223–231

    Article  CAS  PubMed  Google Scholar 

  52. D’Amato CJ, Hicks SP (1965) Effects of low levels of ionizing radiation on the developing cerebral cortex of the rat. Neurology 15(12):1104–1116

    Article  PubMed  Google Scholar 

  53. Hicks SP, D’Amato CJ (1980) Effects of radiation on development, especially of the nervous system. Am J Forensic Med Pathol 1(4):309–317

    CAS  PubMed  Google Scholar 

  54. Dagg CP (1966) Teratogenesis. In: Green EL (ed) Biology of the laboratory mouse, 2nd edn. McGraw-Hill, New York, pp 309–328

    Google Scholar 

  55. Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48:757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Clancy B, Kersh B, Hyde J, Darlington RB, Anand KJ, Finlay BL (2007) Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5(1):79–94

    Article  PubMed  Google Scholar 

  57. Clancy B, Finlay BL, Darlington RB, Anand KJ (2007) Extrapolating brain development from experimental species to humans. Neurotoxicology 28(5):931–937

    Article  PubMed  Google Scholar 

  58. Chugani HT (1998) A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med 27(2):184–188

    Article  CAS  PubMed  Google Scholar 

  59. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ratnapalan S, Bona N, Chandra K, Koren G (2004) Physicians’ perceptions of teratogenic risk associated with radiography and CT during early pregnancy. AJR Am J Roentgenol 182(5):1107–1109

    Article  PubMed  Google Scholar 

  61. Sodickson A (2012) Strategies for reducing radiation exposure in multi-detector row CT. Radiol Clin North Am 50(1):1–14

    Article  PubMed  Google Scholar 

  62. Smith-Bindman R, Miglioretti DL, Johnson E, Lee C, Feigelson HS, Flynn M, Greenlee RT, Kruger RL, Hornbrook MC, Roblin D, Solberg LI, Vanneman N, Weinmann S, Williams AE (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996–2010. JAMA 307(22):2400–2409

    Article  CAS  PubMed  Google Scholar 

  63. Hudson MM (2010) Reproductive outcomes for survivors of childhood cancer. Obstet Gynecol 116(5):1171–1183

    Article  PubMed  PubMed Central  Google Scholar 

  64. Signorella LB, Cohen SS, Bosetti C, Stovall M, Kasper CE, Weathers RE, Whitton JA, Green DM, Donaldson SS, Mertens AC, Robison LL, Boice JD Jr (2006) Female survivors of childhood cancer: preterm birth and low birth weight among their children. J Natl Cancer Inst 98(20):1453–1461

    Article  Google Scholar 

  65. Brent RL, Beckman DA (1990) Environmental teratogens. Bull N Y Acad Med 66(2):123–163

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tank KL (1987) Intra-uterine infections. Ann Acad Med Singapore 16(4):707–712

    Google Scholar 

  67. Collier SA, Rasmussen SA, Feldkamp ML, Honein MA (2009) Prevalence of self-reported infection during pregnancy among control mothers in the National Birth Defects Prevention Study. National Birth Defects Prevention Study. Birth Defects Res A Clin Mol Teratol 85(3):193–201

    Article  CAS  PubMed  Google Scholar 

  68. Menser MA, Forrest JM (1974) Rubella—high incidence of defects in children considered normal at birth. Med J Aust 1(5):123–126

    CAS  PubMed  Google Scholar 

  69. Lee JY, Bowden DS (2000) Rubella virus replication and links to teratogenicity. Clin Microbiol Rev 13(4):571–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wesselhoeft C (1947) Rubella (German measles). N Engl J Med 236:943–950

    Article  CAS  PubMed  Google Scholar 

  71. Forbes JA (1969) Rubella: historical aspects. Am J Dis Child 118(1):5–11

    CAS  PubMed  Google Scholar 

  72. Gregg NM (1991) Congenital cataract following German measles in the mother. 1941. Aust N Z J Ophthalmol 19(4):267–276

    CAS  PubMed  Google Scholar 

  73. Cooper LZ, Alford CA Jr (2006) Rubella, Chapter 28. In: Remington JS, Klein JO, Baker CJ, Wilson CB (eds) Infectious diseases of the fetus and newborn infant, 6th edn. Elsevier, Philadelphia, pp 893–926

    Chapter  Google Scholar 

  74. http://www.cdc.gov/mmwr/preview/mmwr html/rr6204a1.htm

  75. Ghidini A, Lynch L (1993) Prenatal diagnosis and significance of fetal infections. West J Med 159(3):366–373

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Forester JM, Menser MA, Burgess JA (1971) High frequency of diabetes mellitus in young adults with congenital rubella. Lancet 2(7720):332–334

    Article  Google Scholar 

  77. Johnson GM, Tudor RB (1970) Diabetes mellitus and congenital rubella infection. Am J Dis Child 120(5):453–455

    CAS  PubMed  Google Scholar 

  78. Givens KT, Lee DA, Jones T, Ilstrup DM (1993) Congenital rubella syndrome: ophthalmic manifestations and associated systemic disorders. Br J Ophthalmol 77(6):358–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arnold JJ, McIntosh ED, Martin FJ, Menser MA (1994) A fifty-year follow-up of ocular defects in congenital rubella: late ocular manifestations. Aust N Z J Ophthalmol 22(1):1–6

    Article  CAS  PubMed  Google Scholar 

  80. O’Neill JF (1998) The ocular manifestations of congenital infection: a study of the early effect and long-term outcome of maternally transmitted rubella and toxoplasmosis. Trans Am Ophthalmol Soc 96:813–879

    PubMed  PubMed Central  Google Scholar 

  81. Vijayalakshmi P, Kakkar G, Samprathi A, Banushree R (2002) Ocular manifestations of congenital rubella syndrome in a developing country. Indian J Ophthalmol 50:307–311

    CAS  PubMed  Google Scholar 

  82. Hansha JB, Dudgeon JB, Marshall WC (1985) Viral disease of the fetus and newborn, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  83. Robertson SE, Featherstone DA, Gacic-Dobo M, Hersh BS (2003) Rubella and congenital rubella syndrome: global update. Pan Am J Public Health 14(5):306–315

    Article  Google Scholar 

  84. McLean H, Red S, Abernathy E, Icenogle J, Wallace G (2012) Congenital rubella syndrome: Chapter 15-1. In: VPD surveillance manual, 5th edn. CDC, Atlanta, GA, http://www.cdc.gov/vaccines/pubs/surv-manual/chpt15-crs.pdf

    Google Scholar 

  85. Smits G, Mollema L, Hahné S, de Melker H, Tcherniaeva I, van der Klis F, Berbers G (2014) Seroprevalence of rubella antibodies in The Netherlands after 32 years of high vaccination coverage. Vaccine 32(16):1890–1895

    Article  PubMed  Google Scholar 

  86. Hutton J, Rowan P, Greisinger A, Mouzoon M (2014) Rubella monitoring in pregnancy as a means for evaluating a possible reemergence of rubella. Am J Obstet Gynecol 211(5):534.e1–534.e4

    Article  Google Scholar 

  87. Fleet WF Jr, Benz EW Jr, Karzon DT, Lefkowitz LB, Herrmann KL (1974) Fetal consequences of maternal rubella immunization. JAMA 227(6):621–627

    Article  PubMed  Google Scholar 

  88. Wyll SA, Herrmann KL (1973) Inadvertent rubella vaccination of pregnant women. Fetal risk in 215 cases. JAMA 225(12):1472–1476

    Article  CAS  PubMed  Google Scholar 

  89. Bolognese RJ, Corson SL, Fuccillo DA, Sever JL, Traub R (1973) Evaluation of possible transplacental infection with rubella vaccination during pregnancy. Am J Obstet Gynecol 117(7):939–941

    Article  CAS  PubMed  Google Scholar 

  90. Dudgeon JA (1970) Teratogenic effect of rubella virus. Proc R Soc Med 63(12):1254–1257

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cooper LZ (1985) The history and medical consequences of rubella. Rev Infect Dis 7(Suppl 1):S2–S10

    Article  PubMed  Google Scholar 

  92. Cutts FT, Robertson SE, Diaz-Ortega JL, Samuel R (1997) Control of rubella and congenital rubella syndrome (CRS) in developing countries, Part 1: Burden of disease from CRS. Bull World Health Organ 75(1):55–68

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Atreya CD, Mohan KV, Kulkarni S (2004) Rubella virus and birth defects: molecular insights into the viral teratogenesis at the cellular level. Birth Defects Res A Clin Mol Teratol 70(7):431–437

    Article  CAS  PubMed  Google Scholar 

  94. Töndury G, Smith DW (1966) Fetal rubella pathology. J Pediatr 68(6):867–879

    Article  PubMed  Google Scholar 

  95. Driscoll SG (1969) Histopathology of gestational rubella. Am J Dis Child 118(1):49–53

    CAS  PubMed  Google Scholar 

  96. Varghese PJ, Izukawa T, Rowe RD (1969) Supravalvular aortic stenosis as part of rubella syndrome, with discussion of pathogenesis. Br Heart J 31(1):59–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vince DJ (1970) The role of rubella in the etiology of supravalvular aortic stenosis. Can Med Assoc J 103(11):1157–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Perelygina L, Zheng Q, Metcalfe M, Icenogle J (2013) Persistent infection of human fetal endothelial cells with rubella virus. PLoS One 8(8):e73014, Epub 2013 Aug 5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Frey TK (1994) Molecular biology of rubella virus. Adv Virus Res 44:69–160

    Article  CAS  PubMed  Google Scholar 

  100. Horstmann DM (1965) Rubella and the rubella syndrome: new epidemiologic and virologic observations. Calif Med 102:397–403

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Horstmann DM, Banatvala JE, Riordan JT, Payne MC, Whittemore R, Opton EM, duVe Florey C (1965) Maternal rubella and the rubella syndrome in infants. Epidemiologic, clinical, and virologic observations. Am J Dis Child 110(4):408–415

    Article  CAS  PubMed  Google Scholar 

  102. Banatvala JE, Horstmann DM, Payne MC, Gluck L (1965) Rubella syndrome and thrombocytopenic purpura in newborn infants. Clinical and virological observations. N Engl J Med 273(9):474–478

    Article  CAS  PubMed  Google Scholar 

  103. Miller E, Cradock-Watson JE, Pollock TM (1982) The consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet 2(8302):781–784

    Article  CAS  PubMed  Google Scholar 

  104. De Santis M, Cavaliere AF, Straface G, Caruso A (2006) Rubella infection in pregnancy. Reprod Toxicol 21(4):390–398

    Article  PubMed  CAS  Google Scholar 

  105. Ueda K, Hisanaga S, Nishida Y, Shepard TH (1981) Low-birth-weight and congenital rubella syndrome: effect of gestational age at time of maternal rubella infection. Clin Pediatr (Phila) 20(11):730–733

    Article  CAS  Google Scholar 

  106. Ueda K, Nishida Y, Oshima K, Shepard TH (1979) Congenital rubella syndrome: correlation of gestational age at time of maternal rubella with type of defect. J Pediatr 94(5):763–765

    Article  CAS  PubMed  Google Scholar 

  107. Tokugawa K, Ueda K (1986) Rubella epidemicity and endemicity in Japan: analysis of birth years of the 365 cases of deaf children with history of maternal rubella. Int J Epidemiol 15(4):585–587

    Article  CAS  PubMed  Google Scholar 

  108. Best JM (2007) Rubella. Semin Fetal Neonatal Med 12(3):182–192

    Article  PubMed  Google Scholar 

  109. Friedman I, Wright MI (1966) Histopathological changes in the foetal and infantile inner ear caused by maternal rubella. Br Med J 2(5504):20–23

    Article  Google Scholar 

  110. Boniuk M, Zimmerman LE (1967) Ocular pathology in the rubella syndrome. Arch Ophthalmol 77:455–473

    Article  CAS  PubMed  Google Scholar 

  111. Wolf SM (1985) Rubella syndrome. In: Darrell RW (ed) Viral diseases of the eye. Lea & Febiger, Philadelphia, pp 199–207

    Google Scholar 

  112. Ueda K, Tokugawa K, Kusuhara K (1992) Perinatal viral infections. Early Hum Dev 29(1–3):131–135

    Article  CAS  PubMed  Google Scholar 

  113. Karkinen-Jääskeläinen M, Saxén L, Vaheri A, Leinikki P (1975) Rubella cataract in vitro: sensitive period of the developing human lens. J Exp Med 141(6):1238–1248

    Article  PubMed  Google Scholar 

  114. Munro ND, Sheppard S, Smithells RW, Holzel H, Jones G (1987) Temporal relations between maternal rubella and congenital defects. Lancet 2(8552):201–204

    Article  CAS  PubMed  Google Scholar 

  115. Cvkl A, Duncan MK (2007) Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res 26(6):555–597

    Article  CAS  Google Scholar 

  116. Yan B, Yao J, Tao ZF, Jiang Q (2014) Epigenetics and ocular diseases: from basic biology to clinical study. Cell Physiol 229(7):825–833

    Article  CAS  Google Scholar 

  117. Weston MD, Pierce ML, Rocha-Sanchez S, Beisel KW, Soukup GA (2006) MicroRNA gene expression in the mouse inner ear. Brain Res 1111(1):95–104

    Article  CAS  PubMed  Google Scholar 

  118. Quint E, Steel KP (2003) Use of mouse genetics for studying inner ear development. Curr Top Dev Biol 57:45–83

    Article  CAS  PubMed  Google Scholar 

  119. Goldman DS (1984) Vitamin A, and retinoids in health and disease. N Engl J Med 310:1023–1031

    Article  Google Scholar 

  120. D’Ambrosio DN, Clugston RD, Blaner WS (2011) Vitamin A metabolism: an update. Nutrients 3(1):63–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Hinds TS, West WL, Knight EM (1997) Carotenoids and retinoids: a review of research, clinical, and public health applications. J Clin Pharma 37:551–558

    Article  CAS  Google Scholar 

  122. Digiovanna JJ, Mauro T, Milstone LM, Schmuth M, Toro JR (2013) Systemic retinoids in the management of ichthyoses and related skin types. Dermatol Ther 26(1):26–38

    Article  PubMed  Google Scholar 

  123. Hale F (1933) Pigs born without eyeballs. J Hered 24:105–106

    Article  Google Scholar 

  124. Warkany J, Nelson RC (1940) Appearance of skeletal abnormalities in the offspring of rats reared on a deficient diet. Science 92(2391):383–384

    Article  CAS  PubMed  Google Scholar 

  125. Warkany J, Schraffenberger E (1946) Congenital malformations induced in rats by maternal vitamin A deficiency defects of the eye. Arch Ophthal 35:150–169

    Article  CAS  PubMed  Google Scholar 

  126. Wilson JG, Warkany J (1947) Anomalies of the genito-urinary tract induced by maternal vitamin A deficiency in fetal rats. Anat Rec 97(3):376

    CAS  PubMed  Google Scholar 

  127. Warkany J (1948) Experimental studies on nutrition in pregnancy. Obstet Gynecol Surv 3(5):693–703

    Article  CAS  PubMed  Google Scholar 

  128. Wilson JG, Roth CB, Warkany J (1953) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effect of restoration of vitamin A at various times during gestation. Am J Anat 92:189–217

    Article  CAS  PubMed  Google Scholar 

  129. Cohlan SQ (1953) Excessive intake of vitamin A as a cause of congenital anomalies in the rat. Science 117(3046):535–536

    Article  CAS  PubMed  Google Scholar 

  130. Cohlan SQ (1954) Congenital anomalies in the rat produced by excessive intake of vitamin A during pregnancy. Pediatrics 13(6):556–567

    CAS  PubMed  Google Scholar 

  131. Kochhar DM (1967) Teratogenic activity of retinoic acid. Acta Pathol Microbiol Scand 70(3):398–404

    Article  CAS  PubMed  Google Scholar 

  132. Shenefelt RE (1972) Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage at treatment. Teratology 5(1):103–118

    Article  CAS  PubMed  Google Scholar 

  133. Shenefelt RE (1972) Gross congenital malformations. Animal model: treatment of various species with a large dose of vitamin A at known stages in pregnancy. Am J Pathol 66(3):589–592

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Maden M (2001) Vitamin A, and the developing embryo. Postgrad Med J 77(910):489–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Niederreither K, Subbarayan V, Dollé P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21(4):444–448

    Article  CAS  PubMed  Google Scholar 

  136. Adams J, Lammer EJ (1993) Neurobehavioral teratology of isotretinoin. Reprod Toxicol 7(2):175–177

    Article  CAS  PubMed  Google Scholar 

  137. Rizzo R, Lammer EJ, Parano E, Pavone L, Argyle JC (1991) Limb reduction defects in humans associated with prenatal isotretinoin exposure. Teratology 44(6):599–604

    Article  CAS  PubMed  Google Scholar 

  138. Lynberg MC, Khoury MJ, Lammer EJ, Waller KO, Cordero JF, Erickson JD (1990) Sensitivity, specificity, and positive predictive value of multiple malformations in isotretinoin embryopathy surveillance. Teratology 42(5):513–519

    Article  CAS  PubMed  Google Scholar 

  139. Werler MM, Lammer EJ, Rosenberg L, Mitchell AA (1990) Maternal vitamin A supplementation in relation to selected birth defects. Teratology 42(5):497–503

    Article  CAS  PubMed  Google Scholar 

  140. Lammer EJ, Schunior A, Hayes AM, Holmes LB (1988) Isotretinoin dose and teratogenicity. Lancet 2(8609):503–504

    Article  CAS  PubMed  Google Scholar 

  141. Lammer EJ, Hayes AM (1988) Isotretinoin phenocopy. Am J Med Genet 29(3):675–678

    Article  CAS  PubMed  Google Scholar 

  142. Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT, Curry CJ, Fernhoff PM, Grix AW Jr, Lott IT et al (1985) Retinoic acid embryopathy. N Engl J Med 313(14):837–841

    Article  CAS  PubMed  Google Scholar 

  143. Lammer EJ, Flannery DB, Barr M (1985) Does isotretinoin cause limb reduction defects? Lancet 2(8450):328

    Article  CAS  PubMed  Google Scholar 

  144. Rouzès A, Jonville-Béra AP (2014) Exposure to isotretinoin during pregnancy in France: 25 years of follow-up. Therapie 69(1):53–63

    Article  PubMed  Google Scholar 

  145. Stern RS, Rosa F, Baum C (1984) Isotretinoin and pregnancy. Am Acad Dermatol 10(5 Pt 1):851–854

    Article  CAS  Google Scholar 

  146. Dai WS, LaBraico JM, Stern RS (1992) Epidemiology of isotretinoin exposure during pregnancy. J Am Acad Dermatol 26(4):599–606

    Article  CAS  PubMed  Google Scholar 

  147. Newman CG (1985) Teratogen update: clinical aspects of thalidomide embryopathy—a continuing preoccupation. Teratology 32(1):133–144

    Article  CAS  PubMed  Google Scholar 

  148. Sladden MJ, Harman KE (2007) What is the chance of a normal pregnancy in a woman whose fetus has been exposed to isotretinoin? Arch Dermatol 143(9):1187–1188

    Article  PubMed  Google Scholar 

  149. Bérard A, Azoulay L, Koren G, Blais L, Perreault S, Oraichi D (2007) Isotretinoin, pregnancies, abortions and birth defects: a population-based perspective. Br J Clin Pharmacol 63(2):196–205

    Article  PubMed  PubMed Central  Google Scholar 

  150. Webster WS, Johnston MC, Lammer EJ, Sulik KK (1986) Isotretinoin embryopathy and the cranial neural crest: an in vivo and in vitro study. J Craniofac Genet Dev Biol 6(3):211–222

    CAS  PubMed  Google Scholar 

  151. Padmanabhan R (1998) Retinoic acid-induced caudal regression syndrome in the mouse fetus. Reprod Toxicol 12:139–151

    Article  CAS  PubMed  Google Scholar 

  152. Yasuda Y, Konishi H, Kihara T, Tanimura T (1990) Discontinuity of primary and secondary neural tube in spina bifida induced by retinoic acid in mice. Teratology 41:257–274

    Article  CAS  PubMed  Google Scholar 

  153. Quemelo PR, Lourenço CM, Peres LC (2007) Teratogenic effect of retinoic acid in swiss mice. Acta Cir Bras 22(6):451–456

    Article  PubMed  Google Scholar 

  154. Troncoso Sch M, Rojas HC, Bravo CE (2008) Isotretinoin embryopathy. Report of one case. Rev Med Chil 136(6):763–766

    PubMed  Google Scholar 

  155. Yu J, Gonzalez S, Diez-Pardo JA, Tovar JA (2002) Effects of vitamin A on malformations of neural-crest-controlled organs induced by nitrofen in rats. Pediatr Surg Int 18(7):600–605

    Article  PubMed  Google Scholar 

  156. Hart RC, McCue PA, Ragland WL, Winn KJ, Unger ER (1990) Avian model for 13-cis-retinoic acid embryopathy: demonstration of neural crest related defect. Teratology 41(4):463–472

    Article  CAS  PubMed  Google Scholar 

  157. Huang FJ, Lin YL (2001) Effects of retinoic acid on pre-implantation embryo development in mice. Chang Gung Med J 24(11):681–687

    CAS  PubMed  Google Scholar 

  158. Huang FJ, Hsuuw YD, Lan KC, Kang HY, Chang SY, Hsu YC, Huang KE (2006) Adverse effects of retinoic acid on embryo development and the selective expression of retinoic acid receptors in mouse blastocysts. Hum Reprod 21(1):202–209

    Article  CAS  PubMed  Google Scholar 

  159. Rutledge JC, Shourbaji AG, Hughes LA, Polifka JE, Cruz YP, Bishop JB, Generoso WM (1994) Limb and lower-body duplications induced by retinoic acid in mice. Proc Natl Acad Sci U S A 91(12):5436–5440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kaufman MH, Bard JBL (1999) The anatomical basis of mouse development. Academic, San Diego, CA, p 33

    Google Scholar 

  161. Liao X, Collins MD (2008) All-trans retinoic acid-induced ectopic limb and caudal structures: murine strain sensitivities and pathogenesis. Dev Dyn 237(6):1553–1564

    Article  CAS  PubMed  Google Scholar 

  162. O’Rahilly R, Müller F (1989) Interpretation of some median anomalies as illustrated by cyclopia and symmelia. Teratology 40(5):409–421

    Article  PubMed  Google Scholar 

  163. Padmanabhan R, Naruse I, Shiota K (1999) Caudal dysgenesis in staged human embryos: Carnegie stages 16–23. Am J Med Genet 87(2):115–127

    Article  CAS  PubMed  Google Scholar 

  164. Kochhar DM (1973) Limb development in mouse embryos. I. Analysis of teratogenic effects of retinoic acid. Teratology 7(3):289–295

    Article  CAS  Google Scholar 

  165. Kochhar DM, Penner JD, Tellone CI (1984) Comparative teratogenic activities of two retinoids: effects on palate and limb development. Teratog Carcinog Mutagen 4(4):377–387

    Article  CAS  PubMed  Google Scholar 

  166. Padmanabhan R, Ahmed I (1997) Retinoic acid-induced asymmetric craniofacial growth and cleft palate in the TO mouse fetus. Reprod Toxicol 11(6):843–860

    Article  CAS  PubMed  Google Scholar 

  167. Abbott BD, Hill LG, Birnbaum LS (1990) Processes involved in retinoic acid production of small embryonic palatal shelves and limb defects. Teratology 41(3):299–310

    Article  CAS  PubMed  Google Scholar 

  168. Abbott BD, Birnbaum LS (1990) Retinoic acid-induced alterations in the expression of growth factors in embryonic mouse palatal shelves. Teratology 42(6):597–610

    Article  CAS  PubMed  Google Scholar 

  169. Abbott BD, Harris MW, Birnbaum LS (1989) Etiology of retinoic acid-induced cleft palate varies with the embryonic stage. Teratology 40(6):533–553

    Article  CAS  PubMed  Google Scholar 

  170. Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK, de Jong-van den Berg LT, EUROCAT Antiepileptic Study Working Group (2010) Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med 362(23):2185–2193

    Article  CAS  PubMed  Google Scholar 

  171. Meador KJ, Baker GA, Browning N, Cohen MJ, Bromley RL, Clayton-Smith J, Kalayjian LA, Kanner A, Liporace JD, Pennell PB, Privitera M, Loring DW, NEAD Study Group (2013) Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study. Lancet Neurol 12(3):244–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bromley R, Weston J, Adab N, Greenhalgh J, Sanniti A, McKay AJ, Tudur Smith C, Marson AG (2014) Treatment for epilepsy in pregnancy: neurodevelopmental outcomes in the child. Cochrane Database Syst Rev 10, CD010236. doi:10.1002/14651858.CD010236.pub2

    Google Scholar 

  173. Ornoy A (2006) Neuroteratogens in man: an overview with special emphasis on the teratogenicity of antiepileptic drugs in pregnancy. Reprod Toxicol 22(2):214–226

    Article  CAS  PubMed  Google Scholar 

  174. Adams J (1993) Structure-activity and dose-response relationships in the neural and behavioral teratogenesis of retinoids. Neurotoxicol Teratol 15(3):193–202

    Article  CAS  PubMed  Google Scholar 

  175. Rengasamy P, Padmanabhan RR (2004) Experimental studies on cervical and lumbar ribs in mouse embryos. Congenit Anom (Kyoto) 44(3):156–171

    Article  Google Scholar 

  176. Kessel M (1992) Respecification of vertebral identities by retinoic acid. Development 115(2):487–501

    CAS  PubMed  Google Scholar 

  177. Kawanishi CY, Hartig P, Bobseine KL, Schmid J, Cardon M, Massenburg G, Chernoff N (2003) Axial skeletal and Hox expression domain alterations induced by retinoic acid, valproic acid, and bromoxynil during murine development. J Biochem Mol Toxicol 17(6):346–356

    Article  CAS  PubMed  Google Scholar 

  178. Menegola E, Di Renzo F, Broccia ML, Prudenziati M, Minucci S, Massa V, Giavini E (2005) Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Res B Dev Reprod Toxicol 74(5):392–398

    Article  CAS  PubMed  Google Scholar 

  179. Giavini E, Menegola E (2014) Teratogenic activity of HDAC inhibitors. Curr Pharm Des 20(34):5438–5442

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmanahban Rengasamy M.S., Ph.D., F.I.Biol (Lond) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rengasamy, P. (2015). Critical Periods of Development in Teratology. In: Faqi, A. (eds) Developmental and Reproductive Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2015_55

Download citation

  • DOI: https://doi.org/10.1007/7653_2015_55

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7206-7

  • Online ISBN: 978-1-4939-7208-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics