177Lu-Labeled RGD-BBN Peptide for Targeting Prostate Cancer

Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Over the past two decades, peptide receptor radionuclide therapy (PRRT) has been developed as a valid approach for cancer adjuvant treatment. 177Lu is an excellent radionuclide suitable for radionuclide therapy of tumors and metastases, which highlights the advantages of using PRRT for cancer treatment, subsequently encourages scientists to explore many different types of peptides for tumor radionuclide therapy. Arg-Gly-Asp (RGD) and bombesin (BBN) heterodimers have been investigated for dual targeting of tumor integrin αvβ3 receptors and gastrin-releasing peptide receptors. In this chapter, we present the potential application of 177Lu-labeled RGD-BBN heterodimer for targeting prostate cancer.

Keywords:

Gastrin-releasing peptide receptor Integrin αvβ3 177Lu RGD-bombesin Prostate cancer 

Notes

Acknowledgments

This work was supported by DOD-PCRP-NIA PC094646 and sponsored by Shanghai Pujiang Program. The production of 177Lu was supported by Department of Energy Grant 84900-001-10.

References

  1. 1.
    Lantry LE, Cappelletti E, Maddalena ME et al (2006) 177Lu-AMBA: synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47:1144–1152PubMedPubMedCentralGoogle Scholar
  2. 2.
    di Sant’Agnese PA (1998) Neuroendocrine cells of the prostate and neuroendocrine differentiation in prostatic carcinoma: a review of morphologic aspects. Urology 51:121–124CrossRefGoogle Scholar
  3. 3.
    Glover SC, Tretiakova MS, Carroll RE et al (2003) Increased frequency of gastrin-releasing peptide receptor gene mutations during colonadenocarcinoma progression. Mol Carcinog 37:5–15CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vashchenko N, Abrahamsson PA (2005) Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol 47:147–155CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin avb3 for angiogenesis. Science 264:569–571CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu S (2009) Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 20:2199–2213CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Li Z, Wu Z, Chen K et al (2008) 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med 49:453–461CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu Z, Li ZB, Cao Q et al (2009) Small-animal PET of tumors with 64Cu-labeled RGD-bombesin heterodimer. J Nucl Med 50:1168–1177CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liu Z, Yan Y, Chin FT et al (2009) Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. J Med Chem 52:425–432CrossRefPubMedGoogle Scholar
  11. 11.
    Liu Z, Niu G, Wang F et al (2009) 68Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging. Eur J Nucl Med Mol Imaging 36:1483–1494CrossRefPubMedGoogle Scholar
  12. 12.
    Liu Z, Yan Y, Liu S et al (2009) 18F, 64Cu, and 68Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer. Bioconjug Chem 20:1016–1025CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yan Y, Chen K, Yang M et al (2011) A new 18F-labeled BBN-RGD peptide heterodimer with a symmetric linker for prostate cancer imaging. Amino Acids 41:439–447CrossRefPubMedGoogle Scholar
  14. 14.
    Liu Z, Huang J, Dong C et al (2012) 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma. Mol Pharm 9:1409–1417CrossRefPubMedGoogle Scholar
  15. 15.
    Weiner RE, Thakur ML (2005) Radiolabeled peptides in oncology: role in diagnosis and treatment. BioDrugs 19:145–163CrossRefPubMedGoogle Scholar
  16. 16.
    Cremonesi M, Ferrari M, Di Dia A et al (2011) Recent issues on dosimetry and radiobiology for peptide receptor radionuclide therapy. Q J Nucl Med Mol Imaging 55:155–167PubMedGoogle Scholar
  17. 17.
    Hoppmann S, Qi S, Miao Z et al (2012) 177Lu-DO3AHSA-ZEGFR:1907: characterization as a potential radiopharmaceutical for radionuclide therapy of EGFR-expressing head and neck carcinomas. J Biol Inorg Chem 17:709–718CrossRefGoogle Scholar
  18. 18.
    Kwekkeboom DJ, Bakker WH, Kooij PP et al (2001) [177Lu-DOTAOTyr3]octreotate: comparison with [111InDTPAo]octreotide in patients. Eur J Nucl Med Mol Imaging 28:1319–1325CrossRefGoogle Scholar
  19. 19.
    Jiang L, Miao Z, Kimura RH et al (2011) Preliminary evaluation of 177Lu-labeled knottin peptides for integrin receptors-targeted radiotherapy. Eur J Nucl Med Mol Imaging 38:613–622CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jiang L, Kimura RH, Miao Z et al (2010) Evaluation of a 64Cu-labeled cystine-knot peptide based on agouti related protein scaffold for tumor avb3 integrin PET imaging. J Nucl Med 51:251–258CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027PubMedGoogle Scholar
  22. 22.
    Romer A, Seiler D, Marincek N et al (2014) Somatostatin-based radiopeptide therapy with [177Lu-DOTA]-TOC versus [90Y-DOTA]-TOC in neuroendocrine tumors. Eur J Nucl Med Mol Imaging 41:214–222CrossRefPubMedGoogle Scholar
  23. 23.
    D’Huyvetter M, Vincke C, Xavier C et al (2014) Targeted radionuclide therapy with a 177Lu-labeled anti-HER2 nanobody. Theranostics 4:708–720CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
  2. 2.Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordUSA

Personalised recommendations