Copper-Free Click Chemistry Modification of Nanovectors for Integrin-Targeted Cancer Therapy

Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry is the chemical reaction between azide and cyclooctyne groups. This reaction can conjugate biological molecules, such as peptides, in a highly selective way under mild conditions without cross-reaction with the most widely existing reactive groups, such as amine, carboxylic acid, and hydroxide. Thus, the SPAAC reaction is very versatile for biomolecules conjugation. In this book chapter, we provide detailed protocols of conjugation of integrin targeting peptides to either amine or carboxylic acid terminated porous silicon nanovectors by SPAAC, which can be used to enhance the cellular uptake for intracellular cancer drug delivery and for in vivo cancer theranostics.

Keywords

Copper-free click chemistry Peptide conjugation Integrin Targeting drug delivery Nanomedicine Cancer therapy 

Notes

Acknowledgements

Financial support from Academy of Finland (decision nos. 252215 and 281300), University of Helsinki Research Funds, Biocentrum Helsinki, and European Research Council (grant no. 310892).

References

  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  2. 2.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364CrossRefGoogle Scholar
  3. 3.
    Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188(6):759–768CrossRefGoogle Scholar
  4. 4.
    Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2(2):83–90CrossRefGoogle Scholar
  5. 5.
    Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569–571CrossRefGoogle Scholar
  6. 6.
    Weis SM, Cheresh DA (2011) alphaV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med (1):a006478Google Scholar
  7. 7.
    Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309(5963):30–33CrossRefGoogle Scholar
  8. 8.
    Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci U S A 81(19):5985–5988CrossRefGoogle Scholar
  9. 9.
    Shen J, Meng Q, Sui H, Yin Q, Zhang Z, Yu H, Li Y (2014) iRGD conjugated TPGS mediates codelivery of paclitaxel and survivin shRNA for the reversal of lung cancer resistance. Mol Pharm 11(8):2579–2591CrossRefGoogle Scholar
  10. 10.
    Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981):1031–1035CrossRefGoogle Scholar
  11. 11.
    Chen CW, Lu DW, Yeh MK, Shiau CY, Chiang CH (2011) Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int J Nanomedicine 6:2567–2580CrossRefGoogle Scholar
  12. 12.
    Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, Hanahan D, Mattrey RF, Ruoslahti E (2009) Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16(6):510–520CrossRefGoogle Scholar
  13. 13.
    Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48CrossRefGoogle Scholar
  14. 14.
    Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65(1):21–23CrossRefGoogle Scholar
  15. 15.
    Gao Y, Xie J, Chen H, Gu S, Zhao R, Shao J, Jia L (2014) Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol Adv 32(4):761–777CrossRefGoogle Scholar
  16. 16.
    Luk BT, Zhang L (2014) Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces 6(24):21859–21873CrossRefGoogle Scholar
  17. 17.
    Bai F, Wang C, Lu Q, Zhao M, Ban FQ, Yu DH, Guan YY, Luan X, Liu YR, Chen HZ, Fang C (2013) Nanoparticle-mediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer. Biomaterials 34(26):6163–6174CrossRefGoogle Scholar
  18. 18.
    Bigini P, Previdi S, Casarin E, Silvestri D, Violatto MB, Facchin S, Sitia L, Rosato A, Zuccolotto G, Realdon N, Fiordaliso F, Salmona M, Morpurgo M (2014) In vivo fate of avidin-nucleic acid nanoassemblies as multifunctional diagnostic tools. ACS Nano 8(1):175–187CrossRefGoogle Scholar
  19. 19.
    Prasad P, Gordijo CR, Abbasi AZ, Maeda A, Ip A, Rauth AM, DaCosta RS, Wu XY (2014) Multifunctional albumin-MnO(2) nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8(4):3202–3212CrossRefGoogle Scholar
  20. 20.
    Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Mäkilä E, Laaksonen T, Peltonen L, Lehto VP, Hirvonen J, Salonen J (2010) Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4(6):3023–3032CrossRefGoogle Scholar
  21. 21.
    Lee SM, Kim HJ, Kim SY, Kwon MK, Kim S, Cho A, Yun M, Shin JS, Yoo KH (2014) Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer. Biomaterials 35(7):2272–2282CrossRefGoogle Scholar
  22. 22.
    Al-Jamal KT, Nunes A, Methven L, Ali-Boucetta H, Li S, Toma FM, Herrero MA, Al-Jamal WT, ten Eikelder HM, Foster J, Mather S, Prato M, Bianco A, Kostarelos K (2012) Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angew Chem Int Ed Engl 51(26):6389–6393CrossRefGoogle Scholar
  23. 23.
    Li C, Yang D, Ma P, Chen Y, Wu Y, Hou Z, Dai Y, Zhao J, Sui C, Lin J (2013) Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small 9(24):4150–4159CrossRefGoogle Scholar
  24. 24.
    Salonen J, Laitinen L, Kaukonen AM, Tuura J, Bjorkqvist M, Heikkilä T, Vaha-Heikkilä K, Hirvonen J, Lehto VP (2005) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release 108(2–3):362–374CrossRefGoogle Scholar
  25. 25.
    Santos HA, Bimbo LM, Lehto VP, Airaksinen AJ, Salonen J, Hirvonen J (2011) Multifunctional porous silicon for therapeutic drug delivery and imaging. Curr Drug Discov Technol 8(3):228–249CrossRefGoogle Scholar
  26. 26.
    Wang CF, Mäkilä EM, Kaasalainen MH, Liu D, Sarparanta MP, Airaksinen AJ, Salonen JJ, Hirvonen JT, Santos HA (2014) Copper-free azide-alkyne cycloaddition of targeting peptides to porous silicon nanoparticles for intracellular drug uptake. Biomaterials 35(4):1257–1266CrossRefGoogle Scholar
  27. 27.
    Canham LT, Saunders SJ, Heeley PB, Keir AM, Cox TI (1994) Rapid chemography of porous silicon undergoing hydrolysis. Adv Mater 6(11):865–868CrossRefGoogle Scholar
  28. 28.
    Mäkilä E, Bimbo LM, Kaasalainen M, Herranz B, Airaksinen AJ, Heinonen M, Kukk E, Hirvonen J, Santos HA, Salonen J (2012) Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 28(39):14045–14054CrossRefGoogle Scholar
  29. 29.
    Kovalainen M, Mönkäre J, Kaasalainen M, Riikonen J, Lehto VP, Salonen J, Herzig KH, Järvinen K (2013) Development of porous silicon nanocarriers for parenteral peptide delivery. Mol Pharm 10(1):353–359CrossRefGoogle Scholar
  30. 30.
    Wang CF, Mäkilä EM, Bonduelle C, Rytkönen J, Raula J, Almeida S, Närvänen A, Salonen JJ, Lecommandoux S, Hirvonen JT, Santos HA (2015) Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption. ACS Appl Mater Interfaces 7(3):2006–2015CrossRefGoogle Scholar
  31. 31.
    Egli S, Nussbaumer MG, Balasubramanian V, Chami M, Bruns N, Palivan C, Meier W (2011) Biocompatible functionalization of polymersome surfaces: a new approach to surface immobilization and cell targeting using polymersomes. J Am Chem Soc 133(12):4476–4483CrossRefGoogle Scholar
  32. 32.
    Krasnici S, Werner A, Eichhorn ME, Schmitt-Sody M, Pahernik SA, Sauer B, Schulze B, Teifel M, Michaelis U, Naujoks K, Dellian M (2003) Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 105(4):561–567CrossRefGoogle Scholar
  33. 33.
    Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074CrossRefGoogle Scholar
  34. 34.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021CrossRefGoogle Scholar
  35. 35.
    Xi W, Scott TF, Kloxin CJ, Bowman CN (2014) Click chemistry in materials science. Adv Funct Mater 24(18):2572–2590CrossRefGoogle Scholar
  36. 36.
    Ess DH, Jones GO, Houk KN (2008) Transition states of strain-promoted metal-free click chemistry: 1,3-dipolar cycloadditions of phenyl azide and cyclooctynes. Org Lett 10(8):1633–1636CrossRefGoogle Scholar
  37. 37.
    Lallana E, Sousa-Herves A, Fernandez-Trillo F, Riguera R, Fernandez-Megia E (2012) Click chemistry for drug delivery nanosystems. Pharm Res 29(1):1–34CrossRefGoogle Scholar
  38. 38.
    Sawoo S, Dutta P, Chakraborty A, Mukhopadhyay R, Bouloussa O, Sarkar A (2008) A new bio-active surface for protein immobilisation via copper-free ‘click’ between azido SAM and alkynyl Fischer carbene complex. Chem Commun 7(45):5957–5959CrossRefGoogle Scholar
  39. 39.
    Sletten EM, Bertozzi CR (2011) From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 44(9):666–676CrossRefGoogle Scholar
  40. 40.
    Debets MF, van Berkel SS, Dommerholt J, Dirks AT, Rutjes FP, van Delft FL (2011) Bioconjugation with strained alkenes and alkynes. Acc Chem Res 44(9):805–815CrossRefGoogle Scholar
  41. 41.
    Chen K, Wang X, Lin WY, Shen CK, Yap LP, Hughes LD, Conti PS (2012) Strain-promoted catalyst-free click chemistry for rapid construction of 64Cu-labeled PET imaging probes. ACS Med Chem Lett 3(12):1019–1023CrossRefGoogle Scholar
  42. 42.
    Lee DE, Na JH, Lee S, Kang CM, Kim HN, Han SJ, Kim H, Choe YS, Jung KH, Lee KC, Choi K, Kwon IC, Jeong SY, Lee KH, Kim K (2013) Facile method to radiolabel glycol chitosan nanoparticles with 64Cu via copper-free click chemistry for microPET Imaging. Mol Pharm 10(6):2190–2198CrossRefGoogle Scholar
  43. 43.
    Wang CF, Sarparanta MP, Mäkilä EM, Hyvonen ML, Laakkonen PM, Salonen JJ, Hirvonen JT, Airaksinen AJ, Santos HA (2015) Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials 48:108–118CrossRefGoogle Scholar
  44. 44.
    Li S, Goins B, Zhang L, Bao A (2012) Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem 23(6):1322–1332CrossRefGoogle Scholar
  45. 45.
    Su S, Wang H, Liu X, Wu Y, Nie G (2013) iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials 34(13):3523–3533CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations