Skip to main content

Cutpoint Methods in Digital Pathology and Companion Diagnostics

  • Protocol
  • First Online:
Molecular Histopathology and Tissue Biomarkers in Drug and Diagnostic Development

Abstract

Digital image analysis is quickly transforming pathology into a quantitative discipline, where numerous cellular features from individual cells in a tissue samples can be measured and analyzed. Furthermore, digital image analysis is bringing immunohistochemical methods to the forefront of biomarker research making them an integral part of drug development and personalized medicine. As hundreds of quantitative measures generated by digital image analysis of tissues can be correlated to clinical outcomes, the need grows for statistical methods to evaluate these quantitative approaches. Cutpoint analysis is one such statistical method often requested for analyzing data from tissue biopsy evaluation in drug development. This frequently is driven by the need to analyze biomarker expression data in relation to patient survival to stratify patients into subsets of responders and nonresponders to a particular drug treatment. In this chapter we discuss data and outcome-driven approaches in cutpoint analysis, and the caution that should be observed in using cutpoint analysis and appropriate methods for avoiding type I errors. Finally, we provide two examples of how cutpoint analysis can be applied in pharmaceutical datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mazumdar M, Glassman J (2000) Categorizing a prognostic variable: review of methods, code for easy implementation and applications to decision-making about cancer treatments. Stat Med 113–132

    Google Scholar 

  2. Contal C, O'Quigley J (1999) An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput Stat Data Anal 30:253–270

    Article  Google Scholar 

  3. Faraggi D, Simon R (1996) A simulation study of cross-validation for selecting an optimal cutpoint in univariate survival analysis. Stat Med 15:2203–2213

    Article  CAS  PubMed  Google Scholar 

  4. Mazumdar M, Smith A, Bacik J (2003) Methods for categorizing a prognostic variable in a multivariable setting. Stat Med 22:559–571

    Article  PubMed  Google Scholar 

  5. Altman D, Lausen B, Sauerbrei W, Schumacher M (1994) Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst 86:829–835

    Article  CAS  PubMed  Google Scholar 

  6. Cumsille F, Bangdiwala S, Sen PK, Kupper L (2000) Effect of dichotomizinlg a continuous variable on the model structure in multiple linear regression models. Commun Stat 29:643–654

    Article  Google Scholar 

  7. Liquet B, Commenges D (2001) Correction of the p-value after multiple coding of an explanatory variable in logistic regression. Stat Med 20:2815–2826

    Article  CAS  PubMed  Google Scholar 

  8. Boucher K, Slattery M, Berry T, Quesenberry C, Anderson K (1998) A comparison of statistical methods to analyze dose–response and trend analysis in epidemiologic studies. Stat Meth Epidemiol 51:1223–1233

    CAS  Google Scholar 

  9. MacCallum R, Zhang S, Preacher K, Rucker D (2002) On the practice of dichotomization of quantitative variables. Psychol Methods 7:19–40

    Article  PubMed  Google Scholar 

  10. Williams B, Mandrekar J, Cha S, Furth A (2006) Finding optimal cutpoints for continuous covariates with binary and time-to-event outcomes. Technical report. May Clinic, Rochester, MN

    Google Scholar 

  11. Schulgen G, Lausen B, Olsen J, Schumacher M (1994) Outcome-oriented cutpoints in analysis of quantitative exposures. Am J Epidemiol 140:172–184

    CAS  PubMed  Google Scholar 

  12. Greenland S (1995) Avoiding power loss associated with categorization and ordinal scores in dose-response and trend analysis. Epidemiology 6:450–454

    Article  CAS  PubMed  Google Scholar 

  13. Therneau T, Grambsch P, Fleming T (1990) Martingale-based residuals for survival models. Biometrika 77:147–160

    Article  Google Scholar 

  14. Royston P, Altman D, Sauerbrei W (2006) Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med 25:127–141

    Article  PubMed  Google Scholar 

  15. Altman D, Royston P (2006) The cost of dichotomising continuous variables. BMJ 332:1080

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hilsenbeck S, Clark G, McGuire W (1992) Why do so many prognostic factors fail to pan out? Breast Cancer Res Treat 22:197–206

    Article  CAS  PubMed  Google Scholar 

  17. Ragland D (1992) Dichotomizing continuous outcome variables: dependence of the magnitude of association and statistical power on the cutpoint. Epidemiology 3:434–440

    Article  CAS  PubMed  Google Scholar 

  18. Hollander N, Sauerbrei W, Schmacher M (2004) Confidence intervals for the effect of a prognostic factor after selection of an `optimal' cutpoint. Stat Med 23:1701–1713

    Article  PubMed  Google Scholar 

  19. Coombes K, Morris J, Hu J, Edmonson S, Baggerly K (2005) Serum proteomics profiling – a young technology begins to mature. Nat Biotechnol 23:291–292

    Article  CAS  PubMed  Google Scholar 

  20. Braggerly K, Morris J, Coombes K (2004) Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20:777–785

    Article  Google Scholar 

  21. Potti A, Dressman H, Bild A, Reidel R, Chan G, Sayer R, Cragun J, Cottrill H, Kelley M, Peterson R, Harpole D, Marks J, Berchuck A, Ginsburg G, Febbo P, Lancaster J, Nevins J (2011) Retraction: genomic signatures to guide the use of chemotherapeutics. Nat Med 17:135

    Article  CAS  PubMed  Google Scholar 

  22. Matos LL, Trufelli DC, de Matos MG, da Silva Pinhal MA (2010) Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights 5:9–20

    Article  PubMed Central  PubMed  Google Scholar 

  23. Bodey B (2002) The significance of immunohistochemistry in the diagnosis and therapy of neoplasms. Expert Opin Biol Ther 2(4):371–393

    Article  CAS  PubMed  Google Scholar 

  24. Alymani NA, Smith MD, Williams DJ, Petty RD (2010) Predictive biomarkers for personalised anti-cancer drug use: discovery to clinical implementation. Eur J Cancer 46(5):869–879

    Article  CAS  PubMed  Google Scholar 

  25. Jalava P, Kuopio T, Huovinen R, Laine J, Collan Y (2005) Immunohistochemical staining of estrogen and progesterone receptors: aspects for evaluating positivity and defining the cutpoints. Anticancer Res 25:2535–2542

    CAS  PubMed  Google Scholar 

  26. Zlobec I, Steele R, Terracciano L, Jass JR, Lugli A (2007) Selecting immunohistochemical cut-off scores for novel biomarkers of progression and survival in colorectal cancer. J Clin Pathol 60(10):1112–1116

    Article  PubMed Central  PubMed  Google Scholar 

  27. Mascaux C, Wynes MW, Kato Y, Tran C, Asuncion BR, Zhao JM, Gustavson M, Ranger-Moore J, Gaire F, Matsubayashi J, Nagao T, Yoshida K, Ohira T, Ikeda N, Hirsch FR (2011) EGFR protein expression in non-small cell lung cancer predicts response to an EGFR tyrosine kinase inhibitor – a novel antibody for immunohistochemistry or AQUA technology. Clin Cancer Res 17(24):7796–7807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Salles G, de Jong D, Xie W, Rosenwald A, Chhanabhai M, Gaulard P, Klapper W, Calaminici M, Sander B, Thorns C, Campo E, Molina T, Lee A, Pfreundschuh M, Horning S, Lister A, Sehn LH, Raemaekers J, Hagenbeek A, Gascoyne RD, Weller E (2011) Prognostic significance of immunohistochemical biomarkers in diffuse large B-cell lymphoma: a study from the Lunenburge Lymphoma Biomarker Consortium. Blood 117(26):7070–7078

    Article  PubMed  Google Scholar 

  29. Miller R, Siegmund D (1982) Maximally selected chi square statistics. Biometrics 38:1011–1016

    Article  Google Scholar 

  30. Hilsenbeck S, Clark G (1996) Practical p-value adjustment for optimally selected cutpoints. Stat Med 15:103–112

    Article  CAS  PubMed  Google Scholar 

  31. Lausen B, Schumacher M (1996) Evaluating the effect of optimized cutoff values in the assessment of prognostic factors. Comput Stat Data Anal 21:307–326

    Article  Google Scholar 

  32. Harrell F (2001) Regression modelling strategies with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Google Scholar 

  33. Magder L, Fix A (2003) Optimal choice of a cut point for a quantitative diagnostic test performed for research purposes. J Clin Epidemiol 56:956–962

    Article  PubMed  Google Scholar 

  34. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagé C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc P, Trajanoski Z, Fridman W, Pagés F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  CAS  PubMed  Google Scholar 

  35. Lee HE, Chae S, Lee Y, Kim M, Lee HS, Lee B, Kim W (2008) Prognostic implications of type and density of tumour-infiltrating lymphocytes in gastric cancer. Br J Cancer 99:1704–1711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Fukuda K, Tsujitani S, Maeta Y, Yamaguchi K, Ikeguchi M, Kaibara N (2002) The expression of RCAS1 and tumor infiltrating lymphocytes in patients with T3 gastric carcinoma. Gastric Cancer 5:220–227

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Potts Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Black, J.C., Suraneni, M.V., Potts, S.J. (2014). Cutpoint Methods in Digital Pathology and Companion Diagnostics. In: Potts, S., Eberhard, D., Wharton, Jr., K. (eds) Molecular Histopathology and Tissue Biomarkers in Drug and Diagnostic Development. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2014_34

Download citation

  • DOI: https://doi.org/10.1007/7653_2014_34

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2680-0

  • Online ISBN: 978-1-4939-2681-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics