Skip to main content

Targeted Gene Silencing by Using GapmeRs in Differentiating Human-Induced Pluripotent Stem Cells (hiPSC) Toward Pancreatic Progenitors

  • Protocol
  • First Online:
Stem Cells and Lineage Commitment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2736))

  • 286 Accesses

Abstract

Induced pluripotent stem cells as a source for generating pancreatic islet endocrine cells represent a great research tool for deciphering the molecular mechanisms of lineage commitment, a layered multi-step process. Additionally, targeted gene silencing by using GapmeRs, short antisense oligonucleotides, proved instrumental in studying the role of different developmental genes. Here we describe our approach to induce mTOR silencing by using specific GapmeRs during the differentiation of induced pluripotent stem cells toward pancreatic progenitors. We will describe our current differentiation protocol, the transfection procedure, and the quality control steps required for a successful experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159(2):428–439. https://doi.org/10.1016/j.cell.2014.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, Guo T, Puri S, Haataja L, Cirulli V, Blelloch R, Szot GL, Arvan P, Hebrok M (2015) Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J 34(13):1759–1772. https://doi.org/10.15252/embj.201591058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balboa D, Otonkoski T (2015) Human pluripotent stem cell based islet models for diabetes research. Best Pract Res Clin Endocrinol Metab 29(6):899–909. https://doi.org/10.1016/j.beem.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  4. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’Dwyer S, Quiskamp N, Mojibian M, Albrecht T, Yang YH, Johnson JD, Kieffer TJ (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32(11):1121–1133. https://doi.org/10.1038/nbt.3033

    Article  CAS  PubMed  Google Scholar 

  5. Balboa D, Iworima DG, Kieffer TJ (2021) Human pluripotent stem cells to model islet defects in diabetes. Front Endocrinol (Lausanne) 12:642152. https://doi.org/10.3389/fendo.2021.642152

    Article  PubMed  Google Scholar 

  6. Beydag-Tasoz BS, Yennek S, Grapin-Botton A (2023) Towards a better understanding of diabetes mellitus using organoid models. Nat Rev Endocrinol 19(4):232–248. https://doi.org/10.1038/s41574-022-00797-x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  8. Barsby T, Ibrahim H, Lithovius V, Montaser H, Balboa D, Vahakangas E, Chandra V, Saarimaki-Vire J, Otonkoski T (2022) Differentiating functional human islet-like aggregates from pluripotent stem cells. STAR Protoc 3(4):101711. https://doi.org/10.1016/j.xpro.2022.101711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Velazco-Cruz L, Song J, Maxwell KG, Goedegebuure MM, Augsornworawat P, Hogrebe NJ, Millman JR (2019) Acquisition of dynamic function in human stem cell-derived beta cells. Stem Cell Reports 12(2):351–365. https://doi.org/10.1016/j.stemcr.2018.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balboa D, Barsby T, Lithovius V, Saarimaki-Vire J, Omar-Hmeadi M, Dyachok O, Montaser H, Lund PE, Yang M, Ibrahim H, Naatanen A, Chandra V, Vihinen H, Jokitalo E, Kvist J, Ustinov J, Nieminen AI, Kuuluvainen E, Hietakangas V, Katajisto P, Lau J, Carlsson PO, Barg S, Tengholm A, Otonkoski T (2022) Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat Biotechnol 40(7):1042–1055. https://doi.org/10.1038/s41587-022-01219-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghila L, Legoy TA, Mathisen AF, Abadpour S, Paulo JA, Scholz H, Raeder H, Chera S (2021) Chronically elevated exogenous glucose elicits antipodal effects on the proteome signature of differentiating human iPSC-derived pancreatic progenitors. Int J Mol Sci 22(7). https://doi.org/10.3390/ijms22073698

  12. Liu C, Oikonomopoulos A, Sayed N, Wu JC (2018) Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development 145(5). https://doi.org/10.1242/dev.156166

  13. Vegas AJ, Veiseh O, Gurtler M, Millman JR, Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, Tam HH, Jhunjhunwala S, Langan E, Aresta-Dasilva S, Gandham S, McGarrigle JJ, Bochenek MA, Hollister-Lock J, Oberholzer J, Greiner DL, Weir GC, Melton DA, Langer R, Anderson DG (2016) Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 22:306. https://doi.org/10.1038/nm.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Legoy TA, Vethe H, Abadpour S, Strand BL, Scholz H, Paulo JA, Raeder H, Ghila L, Chera S (2020) Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling. Sci Rep 10(1):414. https://doi.org/10.1038/s41598-019-57305-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghila L, Legoy TA, Chera S (2021) A method for encapsulation and transplantation into diabetic mice of human induced pluripotent stem cells (hiPSC)-derived pancreatic progenitors. Methods Mol Biol. https://doi.org/10.1007/7651_2021_356

  16. Carrasco M, Wang C, Soviknes AM, Bjorlykke Y, Abadpour S, Paulo JA, Tjora E, Njolstad P, Ghabayen J, Nermoen I, Lyssenko V, Chera S, Ghila LM, Vaudel M, Scholz H, Raeder H (2022) Spatial environment affects HNF4A mutation-specific proteome signatures and cellular morphology in hiPSC-derived beta-like cells. Diabetes 71(4):862–869. https://doi.org/10.2337/db20-1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petersen MBK, Goncalves CAC, Kim YH, Grapin-Botton A (2018) Recapitulating and deciphering human pancreas development from human pluripotent stem cells in a dish. Curr Top Dev Biol 129:143–190. https://doi.org/10.1016/bs.ctdb.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  18. Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JH, Harb G, Poh YC, Sintov E, Gurtler M, Pagliuca FW, Peterson QP, Melton DA (2019) Charting cellular identity during human in vitro beta-cell differentiation. Nature 569(7756):368–373. https://doi.org/10.1038/s41586-019-1168-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petersen MBK, Azad A, Ingvorsen C, Hess K, Hansson M, Grapin-Botton A, Honore C (2017) Single-cell gene expression analysis of a human ESC model of pancreatic endocrine development reveals different paths to beta-cell differentiation. Stem Cell Reports 9(4):1246–1261. https://doi.org/10.1016/j.stemcr.2017.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharon N, Vanderhooft J, Straubhaar J, Mueller J, Chawla R, Zhou Q, Engquist EN, Trapnell C, Gifford DK, Melton DA (2019) Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Rep 27(8):2281–2291 e2285. https://doi.org/10.1016/j.celrep.2019.04.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Legoy TA, Ghila L, Vethe H, Abadpour S, Mathisen AF, Paulo JA, Scholz H, Raeder H, Chera S (2020) In vivo hyperglycaemia exposure elicits distinct period-dependent effects on human pancreatic progenitor differentiation, conveyed by oxidative stress. Acta Physiol 228(4):e13433. https://doi.org/10.1111/apha.13433

    Article  CAS  Google Scholar 

  22. Legoy TA, Mathisen AF, Salim Z, Vethe H, Bjorlykke Y, Abadpour S, Paulo JA, Scholz H, Raeder H, Ghila L, Chera S (2020) In vivo environment swiftly restricts human pancreatic progenitors toward mono-hormonal identity via a HNF1A/HNF4A mechanism. Front Cell Dev Biol 8:109. https://doi.org/10.3389/fcell.2020.00109

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ghila L, Bjorlykke Y, Legoy TA, Vethe H, Furuyama K, Chera S, Raeder H (2020) Bioinformatic analyses of miRNA-mRNA signature during hiPSC differentiation towards insulin-producing cells upon HNF4alpha mutation. Biomedicine 8(7). https://doi.org/10.3390/biomedicines8070179

  24. Vethe H, Ghila L, Berle M, Hoareau L, Haaland OA, Scholz H, Paulo JA, Chera S, Raeder H (2019) The effect of Wnt pathway modulators on human iPSC-derived pancreatic Beta cell maturation. Front Endocrinol (Lausanne) 10:293. https://doi.org/10.3389/fendo.2019.00293

    Article  PubMed  Google Scholar 

  25. Fontes A, Lakshmipathy U (2013) Advances in genetic modification of pluripotent stem cells. Biotechnol Adv 31(7):994–1001. https://doi.org/10.1016/j.biotechadv.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  26. Yamoah MA, Thai PN, Zhang XD (2021) Transgene delivery to human induced pluripotent stem cells using nanoparticles. Pharmaceuticals (Basel) 14(4). https://doi.org/10.3390/ph14040334

  27. Stein CA, Hansen JB, Lai J, Wu S, Voskresenskiy A, Hog A, Worm J, Hedtjarn M, Souleimanian N, Miller P, Soifer HS, Castanotto D, Benimetskaya L, Orum H, Koch T (2010) Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res 38(1):e3. https://doi.org/10.1093/nar/gkp841

    Article  CAS  PubMed  Google Scholar 

  28. Shen X, Beasley S, Putman JN, Li Y, Prakash TP, Rigo F, Napierala M, Corey DR (2019) Efficient electroporation of neuronal cells using synthetic oligonucleotides: identifying duplex RNA and antisense oligonucleotide activators of human frataxin expression. RNA 25(9):1118–1129. https://doi.org/10.1261/rna.071290.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deleavey GF, Damha MJ (2012) Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol 19(8):937–954. https://doi.org/10.1016/j.chembiol.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  30. Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293. https://doi.org/10.1146/annurev.pharmtox.010909.105654

    Article  CAS  PubMed  Google Scholar 

  31. Liang XH, Sun H, Nichols JG, Crooke ST (2017) RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus. Mol Ther 25(9):2075–2092. https://doi.org/10.1016/j.ymthe.2017.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsuzono K, Imamura K, Murakami N, Tsukita K, Yamamoto T, Izumi Y, Kaji R, Ohta Y, Yamashita T, Abe K, Inoue H (2017) Antisense oligonucleotides reduce RNA foci in spinocerebellar ataxia 36 patient iPSCs. Mol Ther Nucleic Acids 8:211–219. https://doi.org/10.1016/j.omtn.2017.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Max Pietschmann for expert advice and support on establishing the silencing method. The authors also acknowledge research funding received from the Research Council of Norway (NFR 251041 and 314397), Novo Nordic Foundation (NNF15OC0015054 and NNF21OC0067325), and the Norwegian Diabetesforbundet forskningfond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Chera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Unger, L., Ghila, L., Chera, S. (2023). Targeted Gene Silencing by Using GapmeRs in Differentiating Human-Induced Pluripotent Stem Cells (hiPSC) Toward Pancreatic Progenitors. In: Turksen, K. (eds) Stem Cells and Lineage Commitment. Methods in Molecular Biology, vol 2736. Humana, New York, NY. https://doi.org/10.1007/7651_2023_498

Download citation

  • DOI: https://doi.org/10.1007/7651_2023_498

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3536-0

  • Online ISBN: 978-1-0716-3537-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics