Skip to main content

Stem Cell-Derived Microfluidic Amniotic Sac Embryoid (μPASE)

  • Protocol
  • First Online:
Book cover Embryo Models In Vitro

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2767))

  • 216 Accesses

Abstract

The microfluidic amniotic sac embryoid (μPASE) is a human pluripotent stem cell (hPSC)-derived multicellular human embryo-like structure with molecular and morphological features resembling the progressive development of the early post-implantation human embryonic sac. The microfluidic device is specifically designed to control the formation of hPSC clusters and expose the clusters to different morphogen environments, allowing the development of μPASEs in a highly controllable, reproducible, and scalable fashion. The μPASE model displays human embryonic developmental landmarks such as lumenogenesis of the epiblast, amniotic cavity formation, and the specification of primordial germ cells and gastrulating cells (or mesendoderm cells). Here, we provide detailed instructions needed to reproduce μPASEs, including the immunofluorescence staining and cell retrieval protocols for characterizing μPASEs obtained under different experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianco-Miotto T, Craig JM, Gasser YP, van Dijk SJ, Ozanne SE (2017) Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis 8(5):513–519

    Article  CAS  PubMed  Google Scholar 

  2. Koot Y, Teklenburg G, Salker M, Brosens J, Macklon N (2012) Molecular aspects of implantation failure. Biochim Biophys Acta (BBA) 1822(12):1943–1950

    Article  CAS  PubMed  Google Scholar 

  3. Fu J, Warmflash A, Lutolf MP (2021) Stem-cell-based embryo models for fundamental research and translation. Nat Mater 20(2):132–144

    Article  PubMed  Google Scholar 

  4. Rossant J, Tam PP (2017) New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell 20(1):18–28

    Article  CAS  PubMed  Google Scholar 

  5. Rossant J (2015) Mouse and human blastocyst-derived stem cells: vive les differences. Development 142(1):9–12

    Article  CAS  PubMed  Google Scholar 

  6. Tyser RC, Mahammadov E, Nakanoh S, Vallier L, Scialdone A, Srinivas S (2021) Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600(7888):285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiang L, Yin Y, Zheng Y, Ma Y, Li Y, Zhao Z, Guo J, Ai Z, Niu Y, Duan K (2020) A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577(7791):537–542

    Article  CAS  PubMed  Google Scholar 

  8. Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, Fogarty NM, Campbell A, Devito LG, Ilic D (2016) Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol 18(6):700–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH (2016) Self-organization of the in vitro attached human embryo. Nature 533(7602):251–254

    Article  CAS  PubMed  Google Scholar 

  10. Rossant J, Tam PP (2018) Exploring early human embryo development. Science 360(6393):1075–1076

    Article  CAS  PubMed  Google Scholar 

  11. Hyun I, Wilkerson A, Johnston J (2016) Embryology policy: revisit the 14-day rule. Nature 533(7602):169–171

    Article  CAS  PubMed  Google Scholar 

  12. Williams K, Johnson MH (2020) Adapting the 14-day rule for embryo research to encompass evolving technologies. Reprod Biomed Soc Online 10:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hurlbut JB, Hyun I, Levine AD, Lovell-Badge R, Lunshof JE, Matthews KR, Mills P, Murdoch A, Pera MF, Scott CT (2017) Revisiting the Warnock rule. Nat Biotechnol 35(11):1029–1042

    Article  CAS  PubMed  Google Scholar 

  14. Zheng Y, Xue X, Resto-Irizarry A, Li Z, Shao Y, Zheng Y, Zhao G, Fu J (2019) Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche. Sci Adv 5(12):eaax5933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haremaki T, Metzger JJ, Rito T, Ozair MZ, Etoc F, Brivanlou AH (2019) Self-organizing neuruloids model developmental aspects of Huntington’s disease in the ectodermal compartment. Nat Biotechnol 37(10):1198–1208

    Article  CAS  PubMed  Google Scholar 

  16. Xue X, Sun Y, Resto-Irizarry AM, Yuan Y, Aw Yong KM, Zheng Y, Weng S, Shao Y, Chai Y, Studer L (2018) Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat Mater 17(7):633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH (2014) A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods 11(8):847–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moris N, Anlas K, van den Brink SC, Alemany A, Schröder J, Ghimire S, Balayo T, van Oudenaarden A, Martinez Arias A (2020) An in vitro model of early anteroposterior organization during human development. Nature 582(7812):410–415

    Article  CAS  PubMed  Google Scholar 

  19. Shao Y, Taniguchi K, Townshend RF, Miki T, Gumucio DL, Fu J (2017) A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nat Commun 8(1):1–15

    Article  CAS  Google Scholar 

  20. Shao Y, Taniguchi K, Gurdziel K, Townshend RF, Xue X, Yong KMA, Sang J, Spence JR, Gumucio DL, Fu J (2017) Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nat Mater 16(4):419–425

    Article  CAS  PubMed  Google Scholar 

  21. Zheng Y, Yan RZ, Sun S, Kobayashi M, Xiang L, Yang R, Goedel A, Kang Y, Xue X, Esfahani SN (2022) Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development. Cell Stem Cell 29 (9):1402–1419.e1408

    Google Scholar 

  22. Zheng Y, Xue X, Shao Y, Wang S, Esfahani SN, Li Z, Muncie JM, Lakins JN, Weaver VM, Gumucio DL (2019) Controlled modelling of human epiblast and amnion development using stem cells. Nature 573(7774):421–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng Y, Shao Y, Fu J (2021) A microfluidics-based stem cell model of early post-implantation human development. Nat Protoc 16(1):309–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R21 HD105192 and R21 HD109635) and the Department of Biomedical and Chemical Engineering at Syracuse University.

Conflicts of Interest

Two patents related to this work have been filed (US20190321415/WO2018106997 by J. Fu, Y. Zheng, and S.N. Esfahani; US2020049721/PCT/US20/49721 by J. Fu and Y. Zheng).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zheng, Y. (2023). Stem Cell-Derived Microfluidic Amniotic Sac Embryoid (μPASE). In: Zernicka-Goetz, M., Turksen, K. (eds) Embryo Models In Vitro. Methods in Molecular Biology, vol 2767. Humana, New York, NY. https://doi.org/10.1007/7651_2022_470

Download citation

  • DOI: https://doi.org/10.1007/7651_2022_470

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3685-5

  • Online ISBN: 978-1-0716-3686-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics