Skip to main content

Analysis of Mitochondrial Dysfunction by Microplate Reader in hiPSC-Derived Neuronal Cell Models of Neurodegenerative Disorders

  • Protocol
  • First Online:
Book cover Induced Pluripotent Stem Cells and Human Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2549))

Abstract

Mitochondria are responsible for many vital pathways governing cellular homeostasis, including cellular energy management, heme biosynthesis, lipid metabolism, cellular proliferation and differentiation, cell cycle regulation, and cellular viability. Electron transport and ADP phosphorylation coupled with proton pumping through the mitochondrial complexes contribute to the preservation of mitochondrial membrane potential (ΔΨm). Importantly, mitochondrial polarization is essential for reactive oxygen species (ROS) production and cytosolic calcium (Ca2+) handling. Thus, changes in mitochondrial oxidative phosphorylation (OXPHOS), ΔΨm, and ATP/ADP may occur in parallel or stimulate each other. Brain cells like neurons are heavily reliant on mitochondrial OXPHOS for its high-energy demands, and hence improper mitochondrial function is detrimental for neuronal survival. Indeed, several neurodegenerative disorders are associated with mitochondrial dysfunction. Modeling this disease-relevant phenotype in neuronal cells differentiated from patient-derived human induced pluripotent stem cells (hiPSCs) provide an appropriate cellular platform for studying the disease pathology and drug discovery. In this review, we describe high-throughput analysis of crucial parameters related to mitochondrial function in hiPSC-derived neurons. These methodologies include measurement of ΔΨm, intracellular Ca2+, oxidative stress, and ATP/ADP levels using fluorescence probes via a microplate reader. Benefits of such an approach include analysis of mitochondrial parameters on a large population of cells, simultaneous analysis of different cell lines and experimental conditions, and for drug screening to identify compounds restoring mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466:130–134

    Article  PubMed  CAS  Google Scholar 

  2. Zhao RZ, Jiang S, Zhang L, Yu ZB (2019) Mitochondrial electron transport chain, ROS generation and uncoupling (review). Int J Mol Med 44:3–15

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Ramsay RR (2019) Electron carriers and energy conservation in mitochondrial respiration. ChemTexts 5:9

    Article  CAS  Google Scholar 

  4. Krieger C, Duchen MR (2002) Mitochondria, Ca2+ and neurodegenerative disease. Eur J Pharmacol 447:177–188

    Article  PubMed  CAS  Google Scholar 

  5. Crompton M, Barksby E, Johnson N, Capano M (2002) Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 84:143–152

    Article  PubMed  CAS  Google Scholar 

  6. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  7. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  PubMed  CAS  Google Scholar 

  8. Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    Article  PubMed  Google Scholar 

  9. Llorente-Folch I, Rueda CB, Pardo B, Szabadkai G, Duchen MR, Satrustegui J (2015) The regulation of neuronal mitochondrial metabolism by calcium. J Physiol 593:3447–3462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26:711–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bindokas VP, Lee CC, Colmers WF, Miller RJ (1998) Changes in mitochondrial function resulting from synaptic activity in the rat hippocampal slice. J Neurosci 18:4570–4587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Agostini M, Romeo F, Inoue S, Niklison-Chirou MV, Elia AJ, Dinsdale D, Morone N, Knight RA, Mak TW, Melino G (2016) Metabolic reprogramming during neuronal differentiation. Cell Death Differ 23:1502–1514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tang Y, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18:483–491

    Article  PubMed  CAS  Google Scholar 

  14. Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47:365–378

    Article  PubMed  CAS  Google Scholar 

  15. Yang F, He XP, Russell J, Lu B (2003) Ca2+ influx-independent synaptic potentiation mediated by mitochondrial Na(+)-Ca2+ exchanger and protein kinase C. J Cell Biol 163:511–523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Goldenthal MJ, Weiss HR, Marin-Garcia J (2004) Bioenergetic remodeling of heart mitochondria by thyroid hormone. Mol Cell Biochem 265:97–106

    Article  PubMed  CAS  Google Scholar 

  17. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  18. Araujo BG, Souza ESLF, de Barros Torresi JL, Siena A, Valerio BCO, Brito MD, Rosenstock TR (2020) Decreased mitochondrial function, biogenesis, and degradation in peripheral blood mononuclear cells from amyotrophic lateral sclerosis patients as a potential tool for biomarker research. Mol Neurobiol 57:5084–5102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Naia L, Cunha-Oliveira T, Rodrigues J, Rosenstock TR, Oliveira A, Ribeiro M, Carmo C, Oliveira-Sousa SI, Duarte AI, Hayden MR, Rego AC (2017) Histone deacetylase inhibitors protect against pyruvate dehydrogenase dysfunction in Huntington's disease. J Neurosci 37:2776–2794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Naia L, Ferreira IL, Cunha-Oliveira T, Duarte AI, Ribeiro M, Rosenstock TR, Laco MN, Ribeiro MJ, Oliveira CR, Saudou F, Humbert S, Rego AC (2015) Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington’s disease human lymphoblasts. Mol Neurobiol 51:331–348

    Article  PubMed  CAS  Google Scholar 

  21. Naia L, Ribeiro M, Rodrigues J, Duarte AI, Lopes C, Rosenstock TR, Hayden MR, Rego AC (2016) Insulin and IGF-1 regularize energy metabolites in neural cells expressing full-length mutant huntingtin. Neuropeptides 58:73–81

    Article  PubMed  CAS  Google Scholar 

  22. Naia L, Rosenstock TR, Oliveira AM, Oliveira-Sousa SI, Caldeira GL, Carmo C, Laco MN, Hayden MR, Oliveira CR, Rego AC (2017) Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington’s disease models. Mol Neurobiol 54:5385–5399

    Article  PubMed  CAS  Google Scholar 

  23. Noronha C, Perfeito R, Laco M, Wullner U, Rego AC (2017) Expanded and wild-type Ataxin-3 modify the redox status of SH-SY5Y cells overexpressing alpha-Synuclein. Neurochem Res 42:1430–1437

    Article  PubMed  CAS  Google Scholar 

  24. Ghiani CA, Faundez V (2017) Cellular and molecular mechanisms of neurodevelopmental disorders. J Neurosci Res 95:1093–1096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Baburamani AA, Hurling C, Stolp H, Sobotka K, Gressens P, Hagberg H, Thornton C (2015) Mitochondrial optic atrophy (OPA) 1 processing is altered in response to neonatal hypoxic-ischemic brain injury. Int J Mol Sci 16:22509–22526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ferreira IL, Ferreiro E, Schmidt J, Cardoso JM, Pereira CM, Carvalho AL, Oliveira CR, Rego AC (2015) Abeta and NMDAR activation cause mitochondrial dysfunction involving ER calcium release. Neurobiol Aging 36:680–692

    Article  PubMed  CAS  Google Scholar 

  27. Dupuis L, di Scala F, Rene F, de Tapia M, Oudart H, Pradat PF, Meininger V, Loeffler JP (2003) Up-regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis. FASEB J 17:2091–2093

    Article  PubMed  CAS  Google Scholar 

  28. Akopian G, Crawford C, Petzinger G, Jakowec MW, Walsh JP (2012) Brief mitochondrial inhibition causes lasting changes in motor behavior and corticostriatal synaptic physiology in the Fischer 344 rat. Neuroscience 215:149–159

    Article  PubMed  CAS  Google Scholar 

  29. Perfeito R, Lazaro DF, Outeiro TF, Rego AC (2014) Linking alpha-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH-SY5Y cells. Mol Cell Neurosci 62:51–59

    Article  PubMed  CAS  Google Scholar 

  30. Perfeito R, Ribeiro M, Rego AC (2017) Alpha-synuclein-induced oxidative stress correlates with altered superoxide dismutase and glutathione synthesis in human neuroblastoma SH-SY5Y cells. Arch Toxicol 91:1245–1259

    Article  PubMed  CAS  Google Scholar 

  31. Peixoto PM, Kim HJ, Sider B, Starkov A, Horvath TL, Manfredi G (2013) UCP2 overexpression worsens mitochondrial dysfunction and accelerates disease progression in a mouse model of amyotrophic lateral sclerosis. Mol Cell Neurosci 57:104–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Martin LJ (2012) Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci 107:355–415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, Fonseca AC, Baldeiras I, Cunha C, Letra L, Oliveira CR, Pereira CM, Rego AC (2015) Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer’s disease. Biochim Biophys Acta 1852:1428–1441

    Article  PubMed  CAS  Google Scholar 

  34. Rosenstock TR, Carvalho AC, Jurkiewicz A, Frussa-Filho R, Smaili SS (2004) Mitochondrial calcium, oxidative stress and apoptosis in a neurodegenerative disease model induced by 3-nitropropionic acid. J Neurochem 88:1220–1228

    Article  PubMed  CAS  Google Scholar 

  35. Rosenstock TR, Duarte AI, Rego AC (2010) Mitochondrial-associated metabolic changes and neurodegeneration in Huntington’s disease—from clinical features to the bench. Curr Drug Targets 11:1218–1236

    Article  PubMed  CAS  Google Scholar 

  36. Rosenstock TR, Bertoncini CR, Teles AV, Hirata H, Fernandes MJ, Smaili SS (2010) Glutamate-induced alterations in Ca2+ signaling are modulated by mitochondrial Ca2+ handling capacity in brain slices of R6/1 transgenic mice. Eur J Neurosci 32:60–70

    Article  PubMed  CAS  Google Scholar 

  37. Ribeiro M, Rosenstock TR, Cunha-Oliveira T, Ferreira IL, Oliveira CR, Rego AC (2012) Glutathione redox cycle dysregulation in Huntington's disease knock-in striatal cells. Free Radic Biol Med 53:1857–1867

    Article  PubMed  CAS  Google Scholar 

  38. Ribeiro M, Rosenstock TR, Oliveira AM, Oliveira CR, Rego AC (2014) Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington’s disease knock-in striatal cells. Free Radic Biol Med 74:129–144

    Article  PubMed  CAS  Google Scholar 

  39. Brito MD, da Silva GFG, Tilieri EM, Araujo BG, Calio ML, Rosenstock TR (2019) Metabolic alteration and amyotrophic lateral sclerosis outcome: a systematic review. Front Neurol 10:1205

    Article  PubMed  PubMed Central  Google Scholar 

  40. Calio ML, Henriques E, Siena A, Bertoncini CRA, Gil-Mohapel J, Rosenstock TR (2020) Mitochondrial dysfunction, neurogenesis, and epigenetics: putative implications for amyotrophic lateral sclerosis neurodegeneration and treatment. Front Neurosci 14:679

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rosenstock TR, Abilio VC, Frussa-Filho R, Kiyomoto BH, Smaili SS (2009) Old mice present increased levels of succinate dehydrogenase activity and lower vulnerability to dyskinetic effects of 3-nitropropionic acid. Pharmacol Biochem Behav 91:327–332

    Article  PubMed  CAS  Google Scholar 

  42. Rosenstock TR, de Brito OM, Lombardi V, Louros S, Ribeiro M, Almeida S, Ferreira IL, Oliveira CR, Rego AC (2011) FK506 ameliorates cell death features in Huntington’s disease striatal cell models. Neurochem Int 59:600–609

    Article  PubMed  CAS  Google Scholar 

  43. Zhao A, Pan Y, Cai S (2020) Patient-specific cells for modeling and decoding amyotrophic lateral sclerosis: advances and challenges. Stem Cell Rev Rep 16:482–502

    Article  PubMed  Google Scholar 

  44. Soldner F, Jaenisch R (2018) Stem cells, genome editing, and the path to translational medicine. Cell 175:615–632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sterneckert JL, Reinhardt P, Scholer HR (2014) Investigating human disease using stem cell models. Nat Rev Genet 15:625–639

    Article  PubMed  CAS  Google Scholar 

  46. Heilker R, Traub S, Reinhardt P, Scholer HR, Sterneckert J (2014) iPS cell derived neuronal cells for drug discovery. Trends Pharmacol Sci 35:510–519

    Article  PubMed  CAS  Google Scholar 

  47. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  PubMed  CAS  Google Scholar 

  48. Mitne-Neto M, Machado-Costa M, Marchetto MC, Bengtson MH, Joazeiro CA, Tsuda H, Bellen HJ, Silva HC, Oliveira AS, Lazar M, Muotri AR, Zatz M (2011) Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 20:3642–3652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Silva LFSE, Brito MD, Yuzawa JMC, Rosenstock TR (2019) Mitochondrial dysfunction and changes in high-energy compounds in different cellular models associated to hypoxia: implication to schizophrenia. Sci Rep 9:18049

    Article  CAS  Google Scholar 

  50. Dafinca R, Barbagallo P, Farrimond L, Candalija A, Scaber J, Ababneh NA, Sathyaprakash C, Vowles J, Cowley SA, Talbot K (2020) Impairment of mitochondrial calcium buffering links mutations in C9ORF72 and TARDBP in iPS-derived motor neurons from patients with ALS/FTD. Stem Cell Rep 14:892–908

    Article  CAS  Google Scholar 

  51. Bird MJ, Needham K, Frazier AE, van Rooijen J, Leung J, Hough S, Denham M, Thornton ME, Parish CL, Nayagam BA, Pera M, Thorburn DR, Thompson LH, Dottori M (2014) Functional characterization of Friedreich ataxia iPS-derived neuronal progenitors and their integration in the adult brain. PLoS One 9:e101718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Matamoros-Angles A, Gayosso LM, Richaud-Patin Y, di Domenico A, Vergara C, Hervera A, Sousa A, Fernandez-Borges N, Consiglio A, Gavin R, Lopez de Maturana R, Ferrer I, Lopez de Munain A, Raya A, Castilla J, Sanchez-Pernaute R, Del Rio JA (2018) iPS cell cultures from a Gerstmann-Straussler-Scheinker patient with the Y218N PRNP mutation recapitulate tau pathology. Mol Neurobiol 55:3033–3048

    Article  PubMed  CAS  Google Scholar 

  53. Okarmus J, Havelund JF, Ryding M, Schmidt SI, Bogetofte H, Heon-Roberts R, Wade-Martins R, Cowley SA, Ryan BJ, Faergeman NJ, Hyttel P, Meyer M (2021) Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: altered mitochondrial and energy metabolism. Stem Cell Rep 16:1510–1526

    Article  CAS  Google Scholar 

  54. Poon A, Saini H, Sethi S, O'Sullivan GA, Plun-Favreau H, Wray S, Dawson LA, McCarthy JM (2021) The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Rep 16:1276–1289

    Article  CAS  Google Scholar 

  55. Yokota M, Kakuta S, Shiga T, Ishikawa KI, Okano H, Hattori N, Akamatsu W, Koike M (2021) Establishment of an in vitro model for analyzing mitochondrial ultrastructure in PRKN-mutated patient iPSC-derived dopaminergic neurons. Mol Brain 14:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Seranova E, Palhegyi AM, Verma S, Dimova S, Lasry R, Naama M, Sun C, Barrett T, Rosenstock TR, Kumar D, Cohen MA, Buganim Y, Sarkar S (2020) Human induced pluripotent stem cell models of neurodegenerative disorders for studying the biomedical implications of autophagy. J Mol Biol 432:2754–2798

    Article  PubMed  CAS  Google Scholar 

  57. Buganim Y, Faddah DA, Jaenisch R (2013) Mechanisms and models of somatic cell reprogramming. Nat Rev Genet 14:427–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Chambers SM, Qi Y, Mica Y, Lee G, Zhang XJ, Niu L, Bilsland J, Cao L, Stevens E, Whiting P, Shi SH, Studer L (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30:715–720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Cohen MA, Itsykson P, Reubinoff BE (2007) Neural differentiation of human ES cells. Curr Protoc Cell Biol. Chapter 23, Unit 23 27

    Google Scholar 

  61. Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80:588–601

    Article  PubMed  CAS  Google Scholar 

  62. Tao Y, Zhang SC (2016) Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 19:573–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sun C, Rosenstock TR, Cohen MA, Sarkar S (2021) Autophagy dysfunction as a phenotypic readout in hiPSC-derived neuronal cell models of neurodegenerative diseases. Methods Mol Biol. https://doi.org/10.1007/7651_2021_420

  64. Teodoro JS, Machado IF, Castela AC, Rolo AP, Palmeira CM (2020) The evaluation of mitochondrial membrane potential using fluorescent dyes or a membrane-permeable cation (TPP(+)) electrode in isolated mitochondria and intact cells. Methods Mol Biol 2184:197–213

    Article  PubMed  CAS  Google Scholar 

  65. Olowe R, Sandouka S, Saadi A, Shekh-Ahmad T (2020) Approaches for reactive oxygen species and oxidative stress quantification in epilepsy. Antioxidants (Basel) 9:990

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Malkiel Cohen for the neuronal differentiation protocol, BioRender.com via which the figure is created, and the funding agencies for supporting our research. SS has been funded by research grants from LifeArc (P2019-0004), UKIERI (UK-India Education and Research Initiative; 2016-17-0087), Wellcome Trust (109626/Z/15/Z, 1516ISSFFEL10), and Birmingham Fellowship; TRR from FAPESP (São Paulo Research Foundation; 2015/02041-1) and CNPq/CAPES; SS and TRR by FAPESP–Birmingham–Nottingham Strategic Collaboration Fund, Rutherford Fellowship, and University of Birmingham Brazil Visiting Fellowship. SS is also a former fellow for life at Hughes Hall, University of Cambridge, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sovan Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rosenstock, T.R., Sun, C., Hughes, G.W., Winter, K., Sarkar, S. (2022). Analysis of Mitochondrial Dysfunction by Microplate Reader in hiPSC-Derived Neuronal Cell Models of Neurodegenerative Disorders. In: Turksen, K. (eds) Induced Pluripotent Stem Cells and Human Disease. Methods in Molecular Biology, vol 2549. Humana, New York, NY. https://doi.org/10.1007/7651_2021_451

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_451

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2584-2

  • Online ISBN: 978-1-0716-2585-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics