Skip to main content

Directed Differentiation of Mouse Embryonic Stem Cells to Mesoderm, Endoderm, and Neuroectoderm Lineages

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2520))

Abstract

The self-renewal and pluripotency features of mouse embryonic stem cells (mESCs) make them a great tool to study early mammalian development. Various signaling pathways that shape early mammalian development can be mimicked for in vitro mESC differentiation toward primitive lineages first and more specialized cell types later. Since the precise nature of the molecular mechanisms and the crosstalk between these signaling pathways is yet to be fully understood, there is a high level of variability in the efficiency and synchronicity among available differentiation protocols. Commitment of mESCs toward mesoderm, endoderm, or neuroectoderm lineages happens over only a few days and is highly efficient. Here, we provide protocols for the directed differentiation of mESCs toward these lineages in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang G, Ye S, Zhou X et al (2015) Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci 72:1741–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10:91–103

    Article  CAS  PubMed  Google Scholar 

  3. Tam PPL, Loebel DAF (2007) Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 8:368–381

    Article  CAS  PubMed  Google Scholar 

  4. Mishina Y, Suzuki A, Ueno N et al (1995) Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 9:3027–3037

    Article  CAS  PubMed  Google Scholar 

  5. Zeng L, Fagotto F, Zhang T et al (1997) The mouse fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90:181–192

    Article  CAS  PubMed  Google Scholar 

  6. Liu P, Wakamiya M, Shea MJ et al (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22:361–365

    Article  CAS  PubMed  Google Scholar 

  7. Vincent SD, Dunn NR, Hayashi S et al (2003) Cell fate decisions within the mouse organizer are governed by graded nodal signals. Genes Dev 17:1646–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunn NR, Vincent SD, Oxburgh L et al (2004) Combinatorial activities of Smad2 and Smad3 regulate mesoderm formation and patterning in the mouse embryo. Development 131:1717–1728

    Article  CAS  PubMed  Google Scholar 

  9. Chu GC, Dunn NR, Anderson DC et al (2004) Differential requirements for Smad4 in TGFβ-dependent patterning of the early mouse embryo. Development 131:3501–3512

    Article  CAS  PubMed  Google Scholar 

  10. Kubo A, Shinozaki K, Shannon JM et al (2004) Development of definitive endoderm from embryonic stem cells in culture. Development 131:1651–1662

    Article  CAS  PubMed  Google Scholar 

  11. Irion S, Nostro MC, Kattman SJ et al (2008) Directed differentiation of pluripotent stem cells: from developmental biology to therapeutic applications. Cold Spring Harb Symp Quant Biol 73:101–110

    Article  CAS  PubMed  Google Scholar 

  12. Gadue P, Huber TL, Paddison PJ et al (2006) Wnt and TGF-β signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A 103:16806–16811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ying QL, Smith AG (2003) Defined conditions for neural commitment and differentiation. Methods Enzymol 365:327–341

    Article  CAS  PubMed  Google Scholar 

  14. Ying QL, Stavridis M, Griffiths D et al (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183–186

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihal Terzi Cizmecioglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Balbasi, E., Sezginmert, D., Alganatay, C., Terzi Cizmecioglu, N. (2021). Directed Differentiation of Mouse Embryonic Stem Cells to Mesoderm, Endoderm, and Neuroectoderm Lineages. In: Turksen, K. (eds) Embryonic Stem Cell Protocols . Methods in Molecular Biology, vol 2520. Humana, New York, NY. https://doi.org/10.1007/7651_2021_439

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_439

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2436-4

  • Online ISBN: 978-1-0716-2437-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics