Skip to main content

Autophagy Dysfunction as a Phenotypic Readout in hiPSC-Derived Neuronal Cell Models of Neurodegenerative Diseases

Part of the Methods in Molecular Biology book series (MIMB,volume 2549)

Abstract

Autophagy is an evolutionarily conserved catabolic pathway for the degradation of cytoplasmic constituents in eukaryotic cells. It is the primary disposal route for selective removal of undesirable cellular materials like aggregation-prone proteins and damaged organelles for maintaining cellular homeostasis, and for bulk degradation of intracellular macromolecules and recycling the breakdown products for providing energy homeostasis during starvation. These functions of autophagy are attributed to cellular survival and thus pertinent for human health; however, malfunction of this process is detrimental to the cells, particularly for post-mitotic neurons. Thus, basal autophagy is vital for maintaining neuronal homeostasis, whereas autophagy dysfunction contributes to neurodegeneration. Defective autophagy has been demonstrated in several neurodegenerative diseases wherein pharmacological induction of autophagy is beneficial in many of these disease models. Elucidating the mechanisms underlying defective autophagy is imperative for the development of therapies targeting this process. Disease-affected human neuronal cells can be established from patient-derived human induced pluripotent stem cells (hiPSCs) that provide a clinically relevant platform for studying disease mechanisms and drug discovery. Thus, modeling autophagy dysfunction as a phenotypic readout in patient-derived neurons provides a more direct platform for investigating the mechanisms underlying defective autophagy and evaluating the therapeutic efficacy of autophagy inducers. Toward this, several hiPSC-derived neuronal cell models of neurodegenerative diseases have been employed. In this review, we highlight the key methodologies pertaining to hiPSC maintenance and neuronal differentiation, and studying autophagy at an endogenous level in hiPSC-derived neuronal cells.

Key words

  • Autophagosome
  • Autophagy
  • Autophagy dysfunction
  • Autophagy inducer
  • Autophagy substrate
  • hiPSC-derived neurons
  • Human induced pluripotent stem cells
  • LC3
  • Neurodegenerative disease
  • Neuronal differentiation
  • p62

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/7651_2021_420
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2585-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    CrossRef  PubMed  CAS  Google Scholar 

  2. Gatica D, Lahiri V, Klionsky DJ (2018) Cargo recognition and degradation by selective autophagy. Nat Cell Biol 20:233–242

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  3. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501

    CrossRef  PubMed  CAS  Google Scholar 

  4. Lahiri V, Hawkins WD, Klionsky DJ (2019) Watch what you (self-) eat: autophagic mechanisms that modulate metabolism. Cell Metab 29:803–826

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    CrossRef  PubMed  CAS  Google Scholar 

  7. Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12:831–835

    CrossRef  PubMed  CAS  Google Scholar 

  8. Mercer TJ, Gubas A, Tooze SA (2018) A molecular perspective of mammalian autophagosome biogenesis. J Biol Chem 293:5386–5395

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lorincz P, Juhasz G (2020) Autophagosome-lysosome fusion. J Mol Biol 432:2462–2482

    CrossRef  PubMed  CAS  Google Scholar 

  10. Yim WW, Mizushima N (2020) Lysosome biology in autophagy. Cell Discov 6:6

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Meijer AJ, Lorin S, Blommaart EF, Codogno P (2015) Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 47:2037–2063

    CrossRef  PubMed  CAS  Google Scholar 

  13. Zachari M, Ganley IG (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61:585–596

    CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15:741–750

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chan EY, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 282:25464–25474

    CrossRef  PubMed  CAS  Google Scholar 

  16. Karanasios E, Stapleton E, Manifava M, Kaizuka T, Mizushima N, Walker SA, Ktistakis NT (2013) Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci 126:5224–5238

    PubMed  CAS  Google Scholar 

  17. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    CrossRef  PubMed  CAS  Google Scholar 

  18. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  19. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA (2014) WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 55:238–252

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    CrossRef  PubMed  CAS  Google Scholar 

  22. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395:395–398

    CrossRef  PubMed  CAS  Google Scholar 

  24. Karanasios E, Walker SA, Okkenhaug H, Manifava M, Hummel E, Zimmermann H, Ahmed Q, Domart MC, Collinson L, Ktistakis NT (2016) Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat Commun 7:12420

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nakamura S, Yoshimori T (2017) New insights into autophagosome-lysosome fusion. J Cell Sci 130:1209–1216

    PubMed  CAS  Google Scholar 

  26. Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117:4837–4848

    CrossRef  PubMed  CAS  Google Scholar 

  27. Wang Y, Li L, Hou C, Lai Y, Long J, Liu J, Zhong Q, Diao J (2016) SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol 60:97–104

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  28. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396

    CrossRef  PubMed  CAS  Google Scholar 

  29. Di Malta C, Cinque L, Settembre C (2019) Transcriptional regulation of autophagy: mechanisms and diseases. Front Cell Dev Biol 7:114

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  31. Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–296

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sarkar S (2013) Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41:1103–1130

    CrossRef  PubMed  CAS  Google Scholar 

  33. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  34. Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, O'Kane CJ, Floto RA, Rubinsztein DC (2008) Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol 4:295–305

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ganley IG, Wong PM, Gammoh N, Jiang X (2011) Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 42:731–743

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A, Garcia-Arencibia M, Rose C, Luo S, Underwood BR, Kroemer G, O'Kane CJ, Rubinsztein DC (2011) Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 43:19–32

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  37. Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270:2320–2326

    CrossRef  PubMed  CAS  Google Scholar 

  38. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023–8032

    CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Schiebler M, Brown K, Hegyi K, Newton SM, Renna M, Hepburn L, Klapholz C, Coulter S, Obregon-Henao A, Henao Tamayo M, Basaraba R, Kampmann B, Henry KM, Burgon J, Renshaw SA, Fleming A, Kay RR, Anderson KE, Hawkins PT, Ordway DJ, Rubinsztein DC, Floto RA (2015) Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion. EMBO Mol Med 7:127–139

    CrossRef  PubMed  CAS  Google Scholar 

  40. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282:5641–5652

    CrossRef  PubMed  CAS  Google Scholar 

  41. DeBosch BJ, Heitmeier MR, Mayer AL, Higgins CB, Crowley JR, Kraft TE, Chi M, Newberry EP, Chen Z, Finck BN, Davidson NO, Yarasheski KE, Hruz PW, Moley KH (2016) Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal 9:ra21

    CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Siddiqi FH, Menzies FM, Lopez A, Stamatakou E, Karabiyik C, Ureshino R, Ricketts T, Jimenez-Sanchez M, Esteban MA, Lai L, Tortorella MD, Luo Z, Liu H, Metzakopian E, Fernandes HJR, Bassett A, Karran E, Miller BL, Fleming A, Rubinsztein DC (2019) Felodipine induces autophagy in mouse brains with pharmacokinetics amenable to repurposing. Nat Commun 10:1817

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O'Kane CJ, Schreiber SL, Rubinsztein DC (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3:331–338

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  45. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  46. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  47. Stavoe AKH, Holzbaur ELF (2019) Autophagy in neurons. Annu Rev Cell Dev Biol 35:477–500

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    CrossRef  PubMed  CAS  Google Scholar 

  49. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    CrossRef  PubMed  CAS  Google Scholar 

  50. Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Fullgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:1015–1034

    CrossRef  PubMed  CAS  Google Scholar 

  51. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997

    CrossRef  PubMed  CAS  Google Scholar 

  52. Seranova E, Connolly KJ, Zatyka M, Rosenstock TR, Barrett T, Tuxworth RI, Sarkar S (2017) Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem 61:733–749

    CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Palhegyi AM, Seranova E, Dimova S, Hoque S, Sarkar S (2019) Biomedical implications of autophagy in macromolecule storage disorders. Front Cell Dev Biol 7:179

    CrossRef  PubMed  PubMed Central  Google Scholar 

  54. Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 17:660–688

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  56. Panda PK, Fahrner A, Vats S, Seranova E, Sharma V, Chipara M, Desai P, Torresi J, Rosenstock T, Kumar D, Sarkar S (2019) Chemical screening approaches enabling drug discovery of autophagy modulators for biomedical applications in human diseases. Front Cell Dev Biol 7:38

    CrossRef  PubMed  PubMed Central  Google Scholar 

  57. Levine B, Packer M, Codogno P (2015) Development of autophagy inducers in clinical medicine. J Clin Invest 125:14–24

    CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Soldner F, Jaenisch R (2018) Stem cells, genome editing, and the path to translational medicine. Cell 175:615–632

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sterneckert JL, Reinhardt P, Scholer HR (2014) Investigating human disease using stem cell models. Nat Rev Genet 15:625–639

    CrossRef  PubMed  CAS  Google Scholar 

  60. Buganim Y, Faddah DA, Jaenisch R (2013) Mechanisms and models of somatic cell reprogramming. Nat Rev Genet 14:427–439

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  61. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  62. Tao Y, Zhang SC (2016) Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 19:573–586

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cohen MA, Itsykson P, Reubinoff BE (2007) Neural differentiation of human ES cells. Curr Protoc Cell Biol Chapter 23, Unit 23 27

    Google Scholar 

  64. Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80:588–601

    CrossRef  PubMed  CAS  Google Scholar 

  65. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    CrossRef  PubMed  CAS  Google Scholar 

  66. Heilker R, Traub S, Reinhardt P, Scholer HR, Sterneckert J (2014) iPS cell derived neuronal cells for drug discovery. Trends Pharmacol Sci 35:510–519

    CrossRef  PubMed  CAS  Google Scholar 

  67. Seranova E, Palhegyi AM, Verma S, Dimova S, Lasry R, Naama M, Sun C, Barrett T, Rosenstock TR, Kumar D, Cohen MA, Buganim Y, Sarkar S (2020) Human induced pluripotent stem cell models of neurodegenerative disorders for studying the biomedical implications of autophagy. J Mol Biol 432:2754–2798

    CrossRef  PubMed  CAS  Google Scholar 

  68. Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23:33–42

    CrossRef  PubMed  CAS  Google Scholar 

  69. Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z (2006) Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem 281:36303–36316

    CrossRef  PubMed  CAS  Google Scholar 

  70. Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC (2008) Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 4:849–850

    CrossRef  PubMed  CAS  Google Scholar 

  71. Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, Alagappan R, Frampton GM, Xu P, Muffat J, Santagata S, Powers D, Barrett CB, Young RA, Lee JT, Jaenisch R, Mitalipova M (2010) Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141:872–883

    CrossRef  PubMed  CAS  Google Scholar 

  72. Chambers SM, Qi Y, Mica Y, Lee G, Zhang XJ, Niu L, Bilsland J, Cao L, Stevens E, Whiting P, Shi SH, Studer L (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30:715–720

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  73. Jimenez-Moreno N, Stathakos P, Caldwell MA, Lane JD (2017) Induced pluripotent stem cell neuronal models for the study of autophagy pathways in human neurodegenerative disease. Cells:6, 24

    Google Scholar 

  74. Jungverdorben J, Till A, Brustle O (2017) Induced pluripotent stem cell-based modeling of neurodegenerative diseases: a focus on autophagy. J Mol Med 95:705–718

    CrossRef  PubMed  CAS  Google Scholar 

  75. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  76. Klionsky DJ et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17:1–382

    CrossRef  PubMed  PubMed Central  Google Scholar 

  77. Kawabata T, Yoshimori T (2020) Autophagosome biogenesis and human health. Cell Discov 6:33

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  78. Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, Klionsky DJ (2009) In search of an “autophagomometer”. Autophagy 5:585–589

    CrossRef  PubMed  CAS  Google Scholar 

  79. Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181–197

    CrossRef  PubMed  CAS  Google Scholar 

  80. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  81. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    CrossRef  PubMed  CAS  Google Scholar 

  82. Johansen T, Lamark T (2019) Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors. J Mol Biol 432:80–103

    CrossRef  PubMed  CAS  Google Scholar 

  83. Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269

    CrossRef  PubMed  CAS  Google Scholar 

  84. Seranova E, Ward C, Chipara M, Rosenstock TR, Sarkar S (2019) In vitro screening platforms for identifying autophagy modulators in mammalian cells. Methods Mol Biol 1880:389–428

    CrossRef  PubMed  CAS  Google Scholar 

  85. Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18:1865

    CrossRef  PubMed Central  CAS  Google Scholar 

  86. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3:452–460

    CrossRef  PubMed  CAS  Google Scholar 

  87. Kaizuka T, Morishita H, Hama Y, Tsukamoto S, Matsui T, Toyota Y, Kodama A, Ishihara T, Mizushima T, Mizushima N (2016) An autophagic flux probe that releases an internal control. Mol Cell 64:835–849

    CrossRef  PubMed  CAS  Google Scholar 

  88. Larsen KB, Lamark T, Overvatn A, Harneshaug I, Johansen T, Bjorkoy G (2010) A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy 6:784–793

    CrossRef  PubMed  CAS  Google Scholar 

  89. Brown A, Patel S, Ward C, Lorenz A, Ortiz M, DuRoss A, Wieghardt F, Esch A, Otten EG, Heiser LM, Korolchuk VI, Sun C, Sarkar S, Sahay G (2016) PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder. Sci Rep 6:31750

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  90. Sarkar S, Carroll B, Buganim Y, Maetzel D, Ng AH, Cassady JP, Cohen MA, Chakraborty S, Wang H, Spooner E, Ploegh H, Gsponer J, Korolchuk VI, Jaenisch R (2013) Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep 5:1302–1315

    CrossRef  PubMed  PubMed Central  Google Scholar 

  91. Maetzel D, Sarkar S, Wang H, Abi-Mosleh L, Xu P, Cheng AW, Gao Q, Mitalipova M, Jaenisch R (2014) Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Rep 2:866–880

    CrossRef  CAS  Google Scholar 

  92. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  93. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19:2092–2100

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  94. Thost AK, Donnes P, Kohlbacher O, Proikas-Cezanne T (2015) Fluorescence-based imaging of autophagy progression by human WIPI protein detection. Methods 75:69–78

    CrossRef  PubMed  CAS  Google Scholar 

  95. Eskelinen EL (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Asp Med 27:495–502

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

We thank the funding agencies for supporting our research. S.S. has been funded by research grants from LifeArc (P2019-0004), UKIERI (UK-India Education and Research Initiative; 2016-17-0087), Wellcome Trust (109626/Z/15/Z, 1516ISSFFEL10) and Birmingham Fellowship; T.R.R. from FAPESP (São Paulo Research Foundation; 2015/02041-1) and CNPq/CAPES; SS and TRR by FAPESP–Birmingham–Nottingham Strategic Collaboration Fund, Rutherford Fellowship and University of Birmingham Brazil Visiting Fellowship; MAC from Emerald Foundation, LEO Foundation and St. Baldrick’s Foundation. S.S. is also a Former Fellow for life at Hughes Hall, University of Cambridge, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sovan Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Sun, C., Rosenstock, T.R., Cohen, M.A., Sarkar, S. (2021). Autophagy Dysfunction as a Phenotypic Readout in hiPSC-Derived Neuronal Cell Models of Neurodegenerative Diseases. In: Turksen, K. (eds) Induced Pluripotent Stem Cells and Human Disease. Methods in Molecular Biology, vol 2549. Humana, New York, NY. https://doi.org/10.1007/7651_2021_420

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_420

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2584-2

  • Online ISBN: 978-1-0716-2585-9

  • eBook Packages: Springer Protocols