Abstract
Bioreactor technolology enables the expansion of mammalian cells, which can be translated to processes compatible with Current Good Manufacturing Practice (cGMP) regulations. Cells are introduced to the bioreactor vessel, wherein key parameters such as temperature, pH, and oxygen levels are tightly controlled to facilitate growth over time. Here, we describe the microcarrier-based expansion of human pluripotent stem cells in a 3 L stirred tank bioreactor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16:115–130
Protze SI, Lee JH, Keller GM (2019) Human pluripotent stem cell-derived cardiovascular cells: from developmental biology to therapeutic applications. Cell Stem Cell 25:311–327
Tao Y, Zhang SC (2016) Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 19:573–586
Shafa M, Yang F, Fellner T, Rao MS, Baghbaderani BA (2018) Human-induced pluripotent stem cells manufactured using a current good manufacturing practice-compliant process differentiate into clinically relevant cells from three germ layers. Front Med 5. https://doi.org/10.3389/fmed.2018.00069
Li X, Ma R, Gu Q, Liang L, Wang L, Zhang Y, Wang X, Liu X, Li Z, Fang J, Wu J, Wang Y, Li W, Hu B, Wang L, Zhou Q, Hao J (2018) A fully defined static suspension culture system for large-scale human embryonic stem cell production. Cell Death Dis 9. https://doi.org/10.1038/s41419-018-0863-8
Nogueira DES, Rodrigues CAV, Carvalho MS, Miranda CC, Hashimura Y, Jung S, Lee B, Cabral JMS (2019) Strategies for the expansion of human induced pluripotent stem cells as aggregates in single-use Vertical-Wheel™ bioreactors. J Biol Eng 13. https://doi.org/10.1186/s13036-019-0204-1
Shafa M, Panchalingam KM, Walsh T, Richardson T, Baghbaderani BA (2019) Computational fluid dynamics modeling, a novel, and effective approach for developing scalable cell therapy manufacturing processes. Biotechnol Bioeng 116:3228–3241
Pan T, Chen Y, Zhuang Y, Yang F, Xu Y, Tao J, You K, Wang N, Wu Y, Lin X, Wu F, Liu Y, Li Y, Wang G, Li Y, Wang G, Li Y-X (2019) Synergistic modulation of signaling pathways to expand and maintain the bipotency of human hepatoblasts. Stem Cell Res Ther 10. https://doi.org/10.1186/s13287-019-1463-y
Pandey PR, Tomney A, Woon MT, Uth N, Shafighi F, Ngabo I, Vallabhaneni H, Levinson Y, Abraham E, Ben-Nun IF (2020) End-to-end platform for human pluripotent stem cell manufacturing. Int J Mol Sci 21. https://doi.org/10.3390/ijms21010089
Jensen C, Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7. https://doi.org/10.3389/fmolb.2020.00033
Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218
Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.00006
Lv D, Hu Z, Lu L, Lu H, Xu X (2017) Three-dimensional cell culture: a powerful tool in tumor research and drug discovery. Oncol Lett 14:6999–7010
Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111:344–358
Schwedhelm I, Zdzieblo D, Appelt-Menzel A, Berger C, Schmitz T, Schuldt B, Franke A, Müller FJ, Pless O, Schwarz T, Wiedemann P, Walles H, Hansmann J (2019) Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors. Sci Rep 9. https://doi.org/10.1038/s41598-019-48814-w
Badenes SM, Fernandes TG, Cordeiro CSM, Boucher S, Kuninger D, Vemuri MC, Diogo MM, Cabral JMS (2016) Defined essential 8′ medium and vitronectin efficiently support scalable xeno-free expansion of human induced pluripotent stem cells in stirred microcarrier culture systems. PLoS One 11. https://doi.org/10.1371/journal.pone.0151264
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Science+Business Media, LLC
About this protocol
Cite this protocol
Woon, M.T., Pandey, P.R., Friedrich Ben-Nun, I. (2021). Expansion of Human Pluripotent Stem Cells in Stirred Tank Bioreactors. In: Turksen, K. (eds) Bioreactors in Stem Cell Biology. Methods in Molecular Biology, vol 2436. Humana, New York, NY. https://doi.org/10.1007/7651_2021_396
Download citation
DOI: https://doi.org/10.1007/7651_2021_396
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2017-5
Online ISBN: 978-1-0716-2018-2
eBook Packages: Springer Protocols