Halloin C, Schwanke K, Löbel W, Franke A, Szepes M, Biswanath S, Wunderlich S, Merkert S, Weber N, Osten F et al (2019) Continuous WNT control enables advanced hPSC cardiac processing and prognostic surface marker identification in chemically defined suspension culture. Stem Cell Reports 13:366–379. https://doi.org/10.1016/j.stemcr.2019.06.004
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu J, Chai J, Gold J, Wu J et al (2015) Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 15:365–375. https://doi.org/10.1016/j.scr.2015.08.002
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ting S, Chen A, Reuveny S, Oh S (2014) An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Stem Cell Res 13:202–213. https://doi.org/10.1016/j.scr.2014.06.002
CAS
CrossRef
PubMed
Google Scholar
Fonoudi H, Ansari H, Abbasalizadeh S, Larijani MR, Kiani S, Hashemizadeh S, Zarchi AS, Bosman A, Blue GM, Pahlavan S et al (2015) A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Transl Med 4:1482–1494. https://doi.org/10.5966/sctm.2014-0275
CrossRef
PubMed
PubMed Central
Google Scholar
Kempf H, Olmer R, Kropp C, Rückert M, Jara-Avaca M, Robles-Diaz D, Franke A, Elliott DA, Wojciechowski D, Fischer M et al (2014) Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports 3:1132–1146. https://doi.org/10.1016/j.stemcr.2014.09.017
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Hemmi N, Tohyama S, Nakajima K, Kanazawa H, Suzuki T, Hattori F, Seki T, Kishino Y, Hirano A, Okada M et al (2014) A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med 3:1473–1483. https://doi.org/10.5966/sctm.2014-0072
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Branco MA, Cotovio JP, Rodrigues CAV, Vaz SH, Fernandes TG, Moreira LM, Cabral JMS, Diogo MM (2019) Transcriptomic analysis of 3D cardiac differentiation of human induced pluripotent stem cells reveals faster cardiomyocyte maturation compared to 2D Culture. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-45047-9
CAS
CrossRef
Google Scholar
Dahlmann J, Kensah G, Kempf H, Skvorc D, Gawol A, Elliott DA, Dräger G, Zweigerdt R, Martin U, Gruh I (2013) The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials 34:2463–2471. https://doi.org/10.1016/j.biomaterials.2012.12.024
CAS
CrossRef
PubMed
Google Scholar
Zhang M, Schulte JS, Heinick A, Piccini I, Rao J, Quaranta R, Zeuschner D, Malan D, Kim K-P, Röpke A et al (2015) Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation. Stem Cells 33:1456–1469. https://doi.org/10.1002/stem.1964
CAS
CrossRef
PubMed
Google Scholar
Burridge PW, Thompson S, Millrod M a, Weinberg S, Yuan X, Peters A, Mahairaki V, Koliatsos VE, Tung L, Zambidis ET (2011) A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One 6:e18293. https://doi.org/10.1371/journal.pone.0018293
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ma Z, Wang J, Loskill P, Huebsch N, Koo S, Svedlund FL, Marks NC, Hua EW, Grigoropoulos CP, Conklin BR et al (2015) Self-organizing human cardiac microchambers mediated by geometric confinement. Nat Commun 6:7413. https://doi.org/10.1038/ncomms8413
CAS
CrossRef
PubMed
Google Scholar
Bauwens CL, Song H, Thavandiran N, Ungrin M, Massé S, Nanthakumar K, Seguin C, Zandstra PW (2011) Geometric control of cardiomyogenic induction in human pluripotent stem cells. Tissue Eng 17:1901–1909. https://doi.org/10.1089/ten.TEA.2010.0563
CAS
CrossRef
Google Scholar
Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240. https://doi.org/10.1016/j.stem.2010.12.008
CAS
CrossRef
PubMed
Google Scholar
Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, Barron MR, Hou L, Soerens AG, Yu J et al (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells. Circ Res 111:1125–1136. https://doi.org/10.1161/CIRCRESAHA.112.273144
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Hudson J, Titmarsh D, Hidalgo A, Wolvetang E, Cooper-White J (2012) Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev 21:1513–1523. https://doi.org/10.1089/scd.2011.0254
CAS
CrossRef
PubMed
Google Scholar
Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita JK (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 6:e23657. https://doi.org/10.1371/journal.pone.0023657
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109:E1848–E1857. https://doi.org/10.1073/pnas.1200250109
CrossRef
PubMed
PubMed Central
Google Scholar
Laco F, Woo TL, Zhong Q, Szmyd R, Ting S, Khan FJ, Chai CLL, Reuveny S, Chen A, Oh S (2018) Unraveling the inconsistencies of cardiac differentiation efficiency induced by the GSK3β inhibitor CHIR99021 in human pluripotent stem cells. Stem Cell Reports 10:1851–1866. https://doi.org/10.1016/j.stemcr.2018.03.023
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Dias TP, Fernandes TG, Diogo MM, Cabral JMS (2019) Multifactorial modeling reveals a dominant role of wnt signaling in lineage commitment of human pluripotent stem cells. Bioengineering 6. https://doi.org/10.3390/bioengineering6030071
Dias TP, Pinto SN, Santos JI, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JMS (2018) Biophysical study of human induced pluripotent stem cell-derived cardiomyocyte structural maturation during long-term culture. Biochem Biophys Res Commun 499:611–617. https://doi.org/10.1016/j.bbrc.2018.03.198
CAS
CrossRef
PubMed
Google Scholar