Skip to main content

Tracking and Imaging of Transplanted Stem Cells in Animals

  • Protocol
  • First Online:
Imaging and Tracking Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2150))

Abstract

The shortage of organ donors has contributed to the rapid development of cell-based therapy in which stem cells are transplanted and administered to repair or regenerate damaged tissues or organs. The common sources of stem cells are embryonic, mesenchymal, stromal, and induced pluripotent cells. Despite the popularity of stem cell therapy, evaluation of the therapeutic efficiency of transplanted stem cells and their tracking in vivo remains a major challenge. Current imaging modalities such as magnetic resonance imaging, radionuclide imaging, and positron emission tomography have certain limitations such as toxicity, shorter circulation time, and higher cost. Here, we describe near-infrared imaging methods to track and monitor stem cell recruitment to the site of injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vats A, Tolley NS, Bishop AE, Polak JM (2005) Embryonic stem cells and tissue engineering: delivering stem cells to the clinic. J R Soc Med 98(8):346–350

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bowen JE (2015) Technical issues in harvesting and concentrating stem cells (bone marrow and adipose). PM R 7(4 suppl):S8–S18

    PubMed  Google Scholar 

  3. Mahla RS (2016) Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016:6940283. https://doi.org/10.1155/2016/6940283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Awad HA, Butler DL, Harris MT, Ibrahim RE, Wu Y, Young RG, Kadlyala S, Bolvin GP (2000) In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J Biomed Mater Res 51:233–240

    CAS  PubMed  Google Scholar 

  5. Li N, Zhang Q, Gao S, Huang R, Wang L, liu L, Dai J, Tang M, Cheng G (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3:1604. https://doi.org/10.1038/srep01604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, Kassem M, Bunger C (2007) Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 28:1036–1047

    CAS  PubMed  Google Scholar 

  7. Diegelmann RF, Lindblad WJ, Cohen IK (1986) A subcutaneous implant for wound healing studies in humans. J Surg Res 40:229–237

    CAS  PubMed  Google Scholar 

  8. Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, Rosa S, Martin Selig M, Godwin J, Law K, Placidi C, Smith RN, Capella C, Rodig S, Adra C, Atkinson M, Sayegh MH, Abdi R (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183(2):993–1004

    CAS  PubMed  Google Scholar 

  9. Vu H, Zhou J, Huang Y, Hakamivala AH, Khang MK, Tang L (2019) Development of a dual-wavelength fluorescent nanoprobe for in vivo and in vitro cell tracking consecutively. Bioorg Med Chem 27:1855–1862

    CAS  PubMed  PubMed Central  Google Scholar 

  10. IdrisN M, Li Z, Ye L, Wei S, Eugene K, Mahendran R, Ho PCL, Zhang Y (2009) Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials 30:5104–5113

    Google Scholar 

  11. Villa C, Erratico S, Razini P, Fiori F, Rustichelli F, Torrente Y, Belicchi M (2010) Stem cell tracking by nanotechnologies. Int J Mol Sci 11(3):1070–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mortiz F, Gambhir SS, Grimm J (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8:677–688

    Google Scholar 

  13. Lakshmipathy U, Pelacho B, Sudo K, Linehan JL, Coucouvanis E, Kaufman DS, Verfaillie CM (2004) Efficient transfection of embryonic and adult stem cells. Stem Cells 22(4):531–543

    PubMed  Google Scholar 

  14. Tao W, Evans B-G, Yao J, Cooper S, Cornetta K, Ballas CB, Hangoc G, Broxmeyer HE (2007) Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not. Stem Cells 25(3):670–678

    CAS  PubMed  Google Scholar 

  15. Kobayashi N, Rivas-Carrillo JD, Soto-Gutierrez A, Fukazawa T, Chen Y, Navarro-Alvarez N, Tanaka N (2005) Gene delivery to embryonic stem cells. Birth Defects Res (Part C) 75:10–18

    CAS  Google Scholar 

  16. Wang Y, Zhang L, Pan Y, Chen L, Weintraub N, Tang Y (2013) Identification of stem cells after transplantation. Methods Mol Biol 1036:89–94

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Siemen H, Nix M, Endl E, Koch P, Itskovitz-Eldor J, Brüstle O (2005) Nucleofection of human embryonic stem cells. Stem Cells Dev 14:378–383

    CAS  PubMed  Google Scholar 

  18. Ko CY, Wu L, Nair AM, Tsai YT, Lin VK, Tang L (2012) The use of chemokine-releasing tissue engineering scaffolds in a model of inflammatory response-mediated melanoma cancer metastasis. Biomaterials 33(3):876–885

    CAS  PubMed  Google Scholar 

  19. Thevenot PT, Nair AM, Shen J, Lofti P, Ko CY, Tang L (2010) The effect of incorporation of SDF-1α into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials 31(14):3997–4008

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schantz JT, Chim H, Whiteman M (2007) Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Eng 13(11):2615–2624

    CAS  PubMed  Google Scholar 

  21. Nair AM, Thevenot PT, Dey J, Shen J, Sun MW, Yang J, Tang L (2010) Novel polymeric scaffolds using protein microbubbles as porogen and growth factor carriers. Tissue Eng Part C Methods 16(1):23–32

    CAS  PubMed  Google Scholar 

  22. Nair AM, Shen J, Lotfi P, Ko CY, Zhang CC, Tang L (2011) Biomaterial implants mediate autologous stem cell recruitment in mice. Acta Biomater 7(11):3887–3895

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fruchtman S (2003) Stem cell transplantation. Mt Sinai J Med 70(3):166–170

    PubMed  Google Scholar 

  24. Koh CJ, Atala A (2004) Tissue engineering, stem cells, and cloning: opportunities for regenerative medicine. J Am Soc Nephrol 15(5):1113–1125

    PubMed  Google Scholar 

  25. Brenner M, Mirro J, Hurwitz C, Santana V, Ihle J, Krance R et al (1991) Autologous bone marrow transplant for children with AML in first complete remission: use of marker genes to investigate the biology of marrow reconstitution and the mechanism of relapse. Hum Gene Ther 2:137–159

    Google Scholar 

  26. Nam SY, Ricles LM, Suggs LJ, Emelianov SY (2012) In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS One 7(5):1–9

    Google Scholar 

  27. Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JW (2005) Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54(4):769–774

    CAS  PubMed  Google Scholar 

  28. Jena Biosciences (2017) Click chemistry background information. http://www.jenabioscience.com

  29. Takayama Y, Kusamori K, Nishikawa M (2019) Click chemistry as a tool for cell engineering and drug delivery. Molecules 24(1):172

    Google Scholar 

  30. Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104(4):1217–1223

    CAS  PubMed  Google Scholar 

  31. Browne S, Pandit A (2015) Biomaterial-mediated modification of the local inflammatory environment. Front Bioeng Biotechnol 3:67. https://doi.org/10.3389/fbioe.2015.00067

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mckee C, Chaudhry GR (2017) Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 159:62–77

    CAS  PubMed  Google Scholar 

  33. Song S, Hazzi C, Stedeford T, Willing A (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2):247–256

    PubMed  Google Scholar 

  34. Inoue Y, Izawa K, Kiryu S, Tojo A, Ohtomo K (2008) Diet and abdominal autofluorescence detected by in vivo fluorescence imaging of living mice. Mol Imaging 7(1):21–27

    PubMed  Google Scholar 

  35. McNally JB, Kirkpatrick ND, Hariri LP, Tumlinson AR, Besselsen DG, Gerner EW, Utzinger U, Barton JK (2006) Task-based imaging of colon cancer in theApcMin/+ mouse model. Appl Optics 45(13):3049–3062

    Google Scholar 

  36. Marrison J, Räty L, Marriott P, O’Toole P (2013) Ptychography-a label free, high-contrast imaging technique for live cells using quantitative phase information. Sci Rep 3:1–7

    Google Scholar 

  37. Miao Y, Chen Z, Li SC (2019) Functional endoscopy techniques for tracking stem cell fate. Quant Imaging Med Surg 9(3):510–520

    PubMed  PubMed Central  Google Scholar 

  38. Perez JR, Ybarra N, Chagnon F, Serban M, Lee S, Seuntjens J, Lesur O, El Naqa I (2017) Tracking of mesenchymal stem cells with fluorescence endomicroscopy imaging in radiotherapy-induced lung injury. Sci Rep 7:40748

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chikate, T.R., Tang, L. (2019). Tracking and Imaging of Transplanted Stem Cells in Animals. In: Turksen, K. (eds) Imaging and Tracking Stem Cells. Methods in Molecular Biology, vol 2150. Humana, New York, NY. https://doi.org/10.1007/7651_2019_275

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_275

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0626-1

  • Online ISBN: 978-1-0716-0627-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics