3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels

  • Sílvia J. Bidarra
  • Cristina C. BarriasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2002)


Three-dimensional (3D) cell culture systems have gained increasing interest among the scientific community, as they are more biologically relevant than traditional two-dimensional (2D) monolayer cultures. Alginate hydrogels can be formed under cytocompatibility conditions, being among the most widely used cell-entrapment 3D matrices. They recapitulate key structural features of the natural extracellular matrix and can be bio-functionalized with bioactive moieties, such as peptides, to specifically modulate cell behavior. Moreover, alginate viscoelastic properties can be tuned to match those of different types of native tissues. Ionic alginate hydrogels are transparent, allowing routine monitoring of entrapped cells, and crosslinking can be reverted using chelating agents for easy cell recovery. In this chapter, we describe some key steps to establish and characterize 3D cultures of mesenchymal stem cells using alginate hydrogels.


3D cell culture Alginate Artificial matrix Bioengineered 3D matrix Hydrogel Mesenchymal stem cells (MSC) Peptide-modified alginate 



Project 3DEMT funded by POCI-Operacional Programme for Competitiveness and Internationalisation via FEDER-Fundo Europeu de Desenvolvimento Regional (POCI-01-0145-FEDER-016627) and by Portuguese Foundation for Science and Technology (FCT) via OE-Orçamento de Estado (PTDC/BBB-ECT/251872014). The authors thank FCT the post-doctoral grant SFRH/BPD/80571/2011 (Sílvia J. Bidarra) and the IF research position IF/00296/2015 (Cristina C. Barrias).


  1. 1.
    Thomas D, O’Brien T, Pandit A (2018) Toward customized extracellular niche engineering: progress in cell-entrapment technologies. Adv Mater 30(1)CrossRefGoogle Scholar
  2. 2.
    Justice BA, Badr NA, Felder RA (2009) 3D cell culture opens new dimensions in cell-based assays. Drug Discov Today 14(1–2):102–107CrossRefGoogle Scholar
  3. 3.
    Huang G, Li F, Zhao X et al (2017) Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 117(20):12764–12850CrossRefGoogle Scholar
  4. 4.
    Edmondson R, Broglie JJ, Adcock AF et al (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4):207–218CrossRefGoogle Scholar
  5. 5.
    Duval K, Grover H, Han L-H et al (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology 32(4):266–277CrossRefGoogle Scholar
  6. 6.
    Baker BM, Chen CS (2012) Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024CrossRefGoogle Scholar
  7. 7.
    Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663CrossRefGoogle Scholar
  8. 8.
    Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10(4):1646–1662CrossRefGoogle Scholar
  9. 9.
    Bidarra SJ, Torres AL, Barrias CC (2016) Injectable cell delivery systems based on alginate hydrogels for regenerative therapies. In: Hashmi S (ed) Reference module in materials science and materials engineering. Elsevier, Oxford, pp 1–17. CrossRefGoogle Scholar
  10. 10.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126CrossRefGoogle Scholar
  11. 11.
    Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8(3):71–78CrossRefGoogle Scholar
  12. 12.
    Morch YA, Donati I, Strand BL (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7(5):1471–1480CrossRefGoogle Scholar
  13. 13.
    Lee K, Mooney D (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879CrossRefGoogle Scholar
  14. 14.
    Evangelista MB, Hsiong SX, Fernandes R et al (2007) Upregulation of bone cell differentiation through immobilization within a synthetic extracellular matrix. Biomaterials 28(25):3644–3655CrossRefGoogle Scholar
  15. 15.
    Bidarra SJ, Barrias CC, Barbosa MA et al (2010) Immobilization of human mesenchymal stem cells within RGD-grafted alginate microspheres and assessment of their angiogenic potential. Biomacromolecules 11(8):1956–1964CrossRefGoogle Scholar
  16. 16.
    Bidarra SJ, Barrias CC, Fonseca KB et al (2011) Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials 32(31):7897–7904CrossRefGoogle Scholar
  17. 17.
    Maia FR, Barbosa M, Gomes DB et al (2014) Hydrogel depots for local co-delivery of osteoinductive peptides and mesenchymal stem cells. J Control Release 189:158–168CrossRefGoogle Scholar
  18. 18.
    Maia FR, Fonseca KB, Rodrigues G et al (2014) Matrix-driven formation of mesenchymal stem cell-extracellular matrix microtissues on soft alginate hydrogels. Acta Biomater 10(7):3197–3208CrossRefGoogle Scholar
  19. 19.
    Torres AL, Bidarra SJ, Pinto MT et al (2018) Guiding morphogenesis in cell-instructive microgels for therapeutic angiogenesis. Biomaterials 154:34–47CrossRefGoogle Scholar
  20. 20.
    Bidarra SJ, Oliveira P, Rocha S et al (2016) A 3D in vitro model to explore the inter-conversion between epithelial and mesenchymal states during EMT and its reversion. Sci Rep 6:27072CrossRefGoogle Scholar
  21. 21.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53CrossRefGoogle Scholar
  22. 22.
    Maia FR, Lourenco AH, Granja PL et al (2014) Effect of cell density on mesenchymal stem cells aggregation in RGD-alginate 3D matrices under osteoinductive conditions. Macromol Biosci 14(6):759–771CrossRefGoogle Scholar
  23. 23.
    Fonseca KB, Gomes DB, Lee K et al (2014) Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems. Biomacromolecules 15(1):380–390CrossRefGoogle Scholar
  24. 24.
    Fonseca KB, Maia FR, Cuz FA et al (2013) Enzymatic, physiocochemical and biological properties of MMP-sensitive alginate hydrogels. Soft Matter 9:3283–3292CrossRefGoogle Scholar
  25. 25.
    Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6):511–521CrossRefGoogle Scholar
  26. 26.
    Oliveira SM, Barrias CC, Almeida IF et al (2008) Injectability of a bone filler system based on hydroxyapatite microspheres and a vehicle with in situ gel-forming ability. J Biomed Mater Res B Appl Biomater 87B(1):49–58CrossRefGoogle Scholar
  27. 27.
    Fonseca K, Bidarra SJ, Oliveira MJ et al (2011) Molecularly-designed alginate hydrogels susceptible to local proteolysis as 3D cellular microenvironments. Acta Biomater 7(4):1674–1682CrossRefGoogle Scholar
  28. 28.
    Alsberg E, Kong HJ, Hirano Y et al (2003) Regulating bone formation via controlled scaffold degradation. J Dent Res 82(11):903–908CrossRefGoogle Scholar
  29. 29.
    Formo K, Aarstad OA, Skjak-Braek G et al (2014) Lyase-catalyzed degradation of alginate in the gelled state: effect of gelling ions and lyase specificity. Carbohydr Polym 110:100–106CrossRefGoogle Scholar
  30. 30.
    D’Ayala G, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13(9):2069–2106CrossRefGoogle Scholar
  31. 31.
    Fischer AH, Jacobson KA, Rose J et al (2008) Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc 2008:pdb.prot4986Google Scholar
  32. 32.
    Ahmad R, Oprenyeszk F, Sanchez C et al (2015) Chitosan enriched three-dimensional matrix reduces inflammatory and catabolic mediators production by human chondrocytes. PLoS One 10(5):e0128362CrossRefGoogle Scholar
  33. 33.
    Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: an overview. Indian J Clin Biochem 29(3):269–278CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2018

Authors and Affiliations

  1. 1.i3S – Instituto de Investigação e Inovação em SaúdeUniversity of PortoPortoPortugal
  2. 2.INEB – Instituto de Engenharia BiomédicaUniversity of PortoPortoPortugal
  3. 3.ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortoPortugal

Personalised recommendations