Skip to main content

Porcine Cell-Free System to Study Mammalian Sperm Mitophagy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1854))

Abstract

A cell-free system using oocyte extracts is a valuable tool to study early events of animal fertilization and examine protein-protein interactions difficult to observe in whole cells. The process of postfertilization sperm mitophagy assures timely elimination of paternal, sperm-contributed mitochondria carrying potentially corrupted mitochondrial DNA (mtDNA). Cell-free systems would be especially advantageous for studying postfertilization sperm mitophagy as large amounts of oocyte extracts can be incubated with hundreds to thousands of spermatozoa in a single trial, while only one spermatozoon per zygote can be examined by whole-cell approaches. Since sperm mitophagy is species-specific, the abundantly available frog egg extracts commonly used for cell-free systems have to be replaced with isospecific mammalian oocyte extracts, which are difficult to obtain. Here we describe the protocol for a mammalian, porcine cell-free system consisting of permeabilized domestic boar spermatozoa co-incubated with cell extracts from porcine oocytes, suitable for studying the interactions of maternal, oocyte-derived mitophagy factors with paternal, sperm mitochondria.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Miyamoto K, Tsukiyama T, Yang Y, Li N, Minami N, Yamada M, Imai H (2009) Cell-free extracts from mammalian oocytes partially induce nuclear reprogramming in somatic cells. Biol Reprod 80(5):935–943. https://doi.org/10.1095/biolreprod.108.073676

    Article  PubMed  CAS  Google Scholar 

  2. Miyamoto K, Furusawa T, Ohnuki M, Goel S, Tokunaga T, Minami N, Yamada M, Ohsumi K, Imai H (2007) Reprogramming events of mammalian somatic cells induced by Xenopus laevis egg extracts. Mol Reprod Dev 74(10):1268–1277. https://doi.org/10.1002/mrd.20691

    Article  PubMed  CAS  Google Scholar 

  3. Sutovsky P, Simerly C, Hewitson L, Schatten G (1998) Assembly of nuclear pore complexes and annulate lamellae promotes normal pronuclear development in fertilized mammalian oocytes. J Cell Sci 111(Pt 19):2841–2854

    PubMed  CAS  Google Scholar 

  4. Blow JJ, Laskey RA (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47(4):577–587

    Article  CAS  PubMed  Google Scholar 

  5. Zimmerman SW, Manandhar G, Yi YJ, Gupta SK, Sutovsky M, Odhiambo JF, Powell MD, Miller DJ, Sutovsky P (2011) Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization. PLoS One 6(2):e17256. https://doi.org/10.1371/journal.pone.0017256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kaneda H, Hayashi J, Takahama S, Taya C, Lindahl KF, Yonekawa H (1995) Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci U S A 92(10):4542–4546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shitara H, Hayashi JI, Takahama S, Kaneda H, Yonekawa H (1998) Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics 148(2):851–857

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Abeydeera LR, Wang WH, Prather RS, Day BN (1998) Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro. Biol Reprod 58(5):1316–1320

    Article  CAS  PubMed  Google Scholar 

  9. Glikin GC, Ruberti I, Worcel A (1984) Chromatin assembly in Xenopus oocytes: in vitro studies. Cell 37(1):33–41

    Article  CAS  PubMed  Google Scholar 

  10. Ryoji M, Worcel A (1984) Chromatin assembly in Xenopus oocytes: in vivo studies. Cell 37(1):21–32

    Article  CAS  PubMed  Google Scholar 

  11. McLay DW, Clarke HJ (2003) Remodelling the paternal chromatin at fertilization in mammals. Reproduction 125(5):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perreault SD, Wolff RA, Zirkin BR (1984) The role of disulfide bond reduction during mammalian sperm nuclear decondensation in vivo. Dev Biol 101(1):160–167

    Article  CAS  PubMed  Google Scholar 

  13. Perreault SD (1992) Chromatin remodeling in mammalian zygotes. Mutat Res 296(1–2):43–55

    Article  CAS  PubMed  Google Scholar 

  14. Sutovsky P, Schatten G (1997) Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization. Biol Reprod 56(6):1503–1512

    Article  CAS  PubMed  Google Scholar 

  15. Sutovsky P, Tengowski MW, Navara CS, Zoran SS, Schatten G (1997) Mitochondrial sheath movement and detachment in mammalian, but not nonmammalian, sperm induced by disulfide bond reduction. Mol Reprod Dev 47(1):79–86. https://doi.org/10.1002/(SICI)1098-2795(199705)47:1<79::AID-MRD11>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  16. Bedford JM, Calvin HI (1974) Changes in -S-S- linked structures of the sperm tail during epididymal maturation, with comparative observations in sub-mammalian species. J Exp Zool 187(2):181–204. https://doi.org/10.1002/jez.1401870202

    Article  PubMed  CAS  Google Scholar 

  17. Sutovsky P (2004) Visualization of sperm accessory structures in the mammalian spermatids, spermatozoa, and zygotes by immunofluorescence, confocal, and immunoelectron microscopy. Methods Mol Biol 253:59–77. https://doi.org/10.1385/1-59259-744-0:059

    Article  PubMed  Google Scholar 

  18. Song WH, Yi YJ, Sutovsky M, Meyers S, Sutovsky P (2016) Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci U S A 113(36):E5261–E5270. https://doi.org/10.1073/pnas.1605844113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sutovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Song, WH., Sutovsky, P. (2018). Porcine Cell-Free System to Study Mammalian Sperm Mitophagy. In: Turksen, K. (eds) Autophagy in Differentiation and Tissue Maintenance. Methods in Molecular Biology, vol 1854. Humana Press, New York, NY. https://doi.org/10.1007/7651_2018_158

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_158

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8747-4

  • Online ISBN: 978-1-4939-8748-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics