pp 1-25 | Cite as

Design and Analysis of Offshore Macroalgae Biorefineries

  • Alexander Golberg
  • Alexander Liberzon
  • Edward Vitkin
  • Zohar Yakhini
Part of the Methods in Molecular Biology book series


Displacing fossil fuels and their derivatives with renewables, and increasing sustainable food production are among the major challenges facing the world in the coming decades. A possible, sustainable direction for addressing this challenge is the production of biomass and the conversion of this biomass to the required products through a complex system coined biorefinery. Terrestrial biomass and microalgae are possible sources; however, concerns over net energy balance, potable water use, environmental hazards, and uncertainty in the processing technologies raise questions regarding their actual potential to meet the anticipated food, feed, and energy challenges in a sustainable way. Alternative sustainable sources for biorefineries are macroalgae grown and processed offshore. However, implementation of the offshore biorefineries requires detailed analysis of their technological, economic, and environmental performance. In this chapter, the basic principles of marine biorefineries design are shown. The methods to integrate thermodynamic efficiency, investment, and environmental aspects are discussed. The performance improvement by development of new cultivation methods that fit macroalgae physiology and development of new fermentation methods that address macroalgae unique chemical composition is shown.


Coproducts Environmental exergonomics Exergy efficiency Fermentation Macroalgae Marine biorefinery design Offshore cultivation Seaweed 


  1. 1.
    Bentsen NS, Felby C (2012) Biomass for energy in the European Union—a review of bioenergy resource assessments. Biotechnol Biofuels 5:25.  https://doi.org/10.1186/1754-6834-5-25 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gerbens-Leenes W, Hoekstra AY, van der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci U S A 106:10219–10223.  https://doi.org/10.1073/pnas.0812619106 ADSCrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726.  https://doi.org/10.1098/rsif.2009.0322 CrossRefPubMedGoogle Scholar
  4. 4.
    Roesijadi G, Jones SBB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. Department of Energy under Contract DE-AC05-76RL01830 by Pacific Northwest Natl Lab. pp 1–50Google Scholar
  5. 5.
    Pimentel M, Pimentel MH (2008) Food, energy, and society. CRC Press, Boca RatonMATHGoogle Scholar
  6. 6.
    Pimentel D (2012) Global economic and environmental aspects of biofuels. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  7. 7.
    Yun EJ, Choi I-G, Kim KH (2015) Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol 33:247–249.  https://doi.org/10.1016/j.tibtech.2015.02.006 CrossRefPubMedGoogle Scholar
  8. 8.
    Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313.  https://doi.org/10.1126/science.1214547 ADSCrossRefPubMedGoogle Scholar
  9. 9.
    Lehahn Y, Ingle KN, Golberg A (2016) Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: feasibility and sustainability. Algal Res 17:150–160.  https://doi.org/10.1016/j.algal.2016.03.031 CrossRefGoogle Scholar
  10. 10.
    Nikolaisen L, Jensen PD, Bech KS, Dahl J, Busk J, Brodsgaard T, Bo RM, Bruhn A, Bjerre AB, Nielsen HB, Albert KR, Ambus P, Kadar Z, Heiske S, Sander B, Schmidt ER (2008) Energy production from marine biomass (Ulva lactuca). PSO Project No. 2008-1-0050. pp 1–72Google Scholar
  11. 11.
    Martins I, Marques JC (2002) A model for the growth of opportunistic macroalgae (Enteromorpha sp.) in tidal estuaries. Estuar Coast Shelf Sci 55:247–257.  https://doi.org/10.1006/ecss.2001.0900 ADSCrossRefGoogle Scholar
  12. 12.
    Lee CS, Ang P (1991) A simple model for seaweed growth and optimal harvesting strategy. Ecol Model 55:67–74.  https://doi.org/10.1016/0304-3800(91)90065-9 CrossRefGoogle Scholar
  13. 13.
    Seip KL (1980) A computational model for growth a n d harvesting of the marine alga Ascophyllum nodosum. Ecol Model 8:189–199.  https://doi.org/10.1016/0304-3800(80)90037-X CrossRefGoogle Scholar
  14. 14.
    Peteiro C, Freire Ó (2012) Outplanting time and methodologies related to mariculture of the edible kelp Undaria pinnatifida in the Atlantic coast of Spain. J Appl Phycol 24:1361–1372.  https://doi.org/10.1007/s10811-012-9788-2 CrossRefGoogle Scholar
  15. 15.
    Neushul M, Benson J, Harger BWW, Charters a C (1992) Macroalgal farming in the sea: water motion and nitrate uptake. J Appl Phycol 4:255–265.  https://doi.org/10.1007/BF02161211 CrossRefGoogle Scholar
  16. 16.
    Hurd CL (2000) Water motion, marine macroalgal physiology, and production. J Phycol 36:453–472.  https://doi.org/10.1046/j.1529-8817.2000.99139.x CrossRefGoogle Scholar
  17. 17.
    Buck BH, Buchholz CM (2004) The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J Appl Phycol 16:355–368.  https://doi.org/10.1023/B:JAPH.0000047947.96231.ea CrossRefGoogle Scholar
  18. 18.
    Hanisak M (1987) Cultivation of Gracilaria and other macroalgae in Florida for energy production. In: Bird KT, Benson PH (eds) Seaweed cultivation for renewable resources. Elsevier, Amsterdam, pp 191–218Google Scholar
  19. 19.
    Buck BH, Krause G, Michler-Cieluch T, Brenner M, Buchholz CM, Busch JA, Fisch R, Geisen M, Zielinski O (2008) Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms. Helgol Mar Res 62:269–281.  https://doi.org/10.1007/s10152-008-0115-x ADSCrossRefGoogle Scholar
  20. 20.
    Jung KA, Lim S-RR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190.  https://doi.org/10.1016/j.biortech.2012.10.025 CrossRefPubMedGoogle Scholar
  21. 21.
    Klimakrise F-UND (2009) Focus: systemic risks, part 2 marine aquaculture within offshore wind farms: social aspects of multiple-use planning. Vol 184Google Scholar
  22. 22.
    Michler-Cieluch T, Krause G, Buck BH (2009) Reflections on integrating operation and maintenance activities of offshore wind farms and mariculture. Ocean Coast Manag 52:57–68.  https://doi.org/10.1016/j.ocecoaman.2008.09.008 CrossRefGoogle Scholar
  23. 23.
    Reith JH, Curvers APWM, Kamermans P, Brandenburg W, Zeeman G (2005) Bio-offshore grootschalige teelt van zeewieren in combinatie met offshore windparken in de Noordzee. pp 1–137. https://www.wur.nl/en/Publication-details.htm?publicationId=publication-way-333437363938
  24. 24.
    Yantovski E (2000) Exergonomics in education. Energy 25:1021–1031.  https://doi.org/10.1016/S0360-5442(00)00027-X CrossRefGoogle Scholar
  25. 25.
    Yantovsky EI (1989) Non-equilibrium thermodynamics in thermal engineering. Energy 14:393–396.  https://doi.org/10.1016/0360-5442(89)90134-5 CrossRefGoogle Scholar
  26. 26.
    Golberg A (2015) Environmental exergonomics for sustainable design and analysis of energy systems. Energy.  https://doi.org/10.1016/j.energy.2015.05.053
  27. 27.
    Szargut J (1971) Anwendung der Exergie zur angenaherten wirtschaftlichen Optimierung. Brennst Wärme Kraft 23:516–519Google Scholar
  28. 28.
    Simpson AP, Edwards CF (2011) An exergy-based framework for evaluating environmental impact. Energy 36:1442–1459.  https://doi.org/10.1016/j.energy.2011.01.025 CrossRefGoogle Scholar
  29. 29.
    Hermann WA (2006) Quantifying global exergy resources. Energy 31:1349–1366.  https://doi.org/10.1016/j.energy.2005.09.006 CrossRefGoogle Scholar
  30. 30.
    Sciubba E (2003) Extended exergy accounting applied to energy recovery from waste: the concept of total recycling. Energy 28:1315–1334.  https://doi.org/10.1016/S0360-5442(03)00111-7 CrossRefGoogle Scholar
  31. 31.
    Sciubba E (2012) A thermodynamically correct treatment of externalities with an exergy-based numeraire. Sustainability 4:933–957.  https://doi.org/10.3390/su4050933 CrossRefGoogle Scholar
  32. 32.
    Dai J, Chen B, Sciubba E (2014) Ecological accounting based on extended exergy: a sustainability perspective. Environ Sci Technol 48:9826–9833.  https://doi.org/10.1021/es404191v ADSCrossRefPubMedGoogle Scholar
  33. 33.
    Jørgensen SE (2006–2007) An integrated ecosystem theory. Ann Eur Acad Sci. EAS Publishing House, Liège, pp 19–33. http://www.eurasc.org/annals/docs/Jorgensen_TeamR_f(15).pdf
  34. 34.
    Jørgensen SE, Mejer H (1977) Ecological buffer capacity. Ecol Model 3:39–61.  https://doi.org/10.1016/0304-3800(77)90023-0 CrossRefGoogle Scholar
  35. 35.
    Jørgensen SE (1990) Ecosystem theory, ecological buffer capacity, uncertainty and complexity. Ecol Model 52:125–133.  https://doi.org/10.1016/0304-3800(90)90013-7 CrossRefGoogle Scholar
  36. 36.
    Xu FL, Dawson RW, Tao S, Li BG, Cao J (2002) System-level responses of lake ecosystems to chemical stresses using exergy and structural exergy as ecological indicators. Chemosphere 46:173–185.  https://doi.org/10.1016/S0045-6535(01)00127-8 ADSCrossRefPubMedGoogle Scholar
  37. 37.
    Zhang J, Gurkan Z, Jørgensen SE (2010) Application of eco-exergy for assessment of ecosystem health and development of structurally dynamic models. Ecol Model 221:693–702.  https://doi.org/10.1016/j.ecolmodel.2009.10.017 CrossRefGoogle Scholar
  38. 38.
    Harte J, Newman EA (2014) Maximum information entropy: a foundation for ecological theory. Trends Ecol Evol 29:384–389.  https://doi.org/10.1016/j.tree.2014.04.009 CrossRefPubMedGoogle Scholar
  39. 39.
    Dalsgaard JPT, Lightfoot C, Christensen V (1995) Towards quantification of ecological sustainability in farming systems analysis. Ecol Eng 4:181–189.  https://doi.org/10.1016/0925-8574(94)00057-C CrossRefGoogle Scholar
  40. 40.
    Jørgensen SE (2015) New method to calculate the work energy of information and organisms. Ecol Model 295:18–20.  https://doi.org/10.1016/j.ecolmodel.2014.09.001 CrossRefGoogle Scholar
  41. 41.
    Jørgensen SE, Ladegaard N, Debeljak M, Marques JC (2005) Calculations of exergy for organisms. Ecol Model 185:165–175.  https://doi.org/10.1016/j.ecolmodel.2004.11.020 CrossRefGoogle Scholar
  42. 42.
    Svirezhev YM, Steinborn WH (2001) Exergy of solar radiation: information approach. Ecol Model 145:101–110.  https://doi.org/10.1016/S0304-3800(01)00409-4 CrossRefGoogle Scholar
  43. 43.
    Hernandez RR, Easter SB, Murphy-Mariscal ML, Maestre FT, Tavassoli M, Allen EB, Barrows CW, Belnap J, Ochoa-Hueso R, Ravi S, Allen MF (2014) Environmental impacts of utility-scale solar energy. Renew Sustain Energy Rev 29:766–779.  https://doi.org/10.1016/j.rser.2013.08.041 CrossRefGoogle Scholar
  44. 44.
    Crowl TA, Crist TO, Parmenter RR, Belovsky G, Lugo AE (2008) The spread of invasive species and infectious disease as drivers of ecosystem change. Front Ecol Environ 6:238–246.  https://doi.org/10.1890/070151 CrossRefGoogle Scholar
  45. 45.
    French B (1960) Some considerations in estimating assembly cost functions for agricultural processing operations. J Farm Econ 42:767–778CrossRefGoogle Scholar
  46. 46.
    Golberg A, Vitkin E, Linshiz G, Khan SA, Hillson NJ, Yakhini Z, Yarmush ML (2014) Proposed design of distributed macroalgal biorefineries: thermodynamics, bioconversion technology, and sustainability implications for developing economies. Biofuels Bioprod Biorefin 8:67–82.  https://doi.org/10.1002/bbb.1438 CrossRefGoogle Scholar
  47. 47.
    Valderrama D, Cai J, Hishamunda N (2013) Social and economic dimensions of carrageenan seaweed farming. FAO Fisheries and Aquaculture Technical Paper No. 580Google Scholar
  48. 48.
    Lenstra W, van Hal J, Reith J (2011) Ocean Seaweed Biomass. For large scale biofuel production. Ocean Seaweed Biomass, Bremerhaven, GermanyGoogle Scholar
  49. 49.
    USDA (2008) Energy balance of the corn-ethanol industry. http://www.usda.gov/oce/reports/energy/2008Ethanol_June_final.pdf
  50. 50.
    Hughes AD, Kelly MS, Black KD, Stanley MS (2012) Biogas from macroalgae: is it time to revisit the idea? Biotechnol Biofuels 5:86.  https://doi.org/10.1186/1754-6834-5-86 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wei N, Quarterman J, Jin Y-S (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31:70–77.  https://doi.org/10.1016/j.tibtech.2012.10.009 CrossRefPubMedGoogle Scholar
  52. 52.
    Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol 11:457–475CrossRefPubMedGoogle Scholar
  53. 53.
    Stitt M, Schulze D (1994) Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ 17:465–487.  https://doi.org/10.1111/j.1365-3040.1994.tb00144.x CrossRefGoogle Scholar
  54. 54.
    Marcus Y, Altman-Gueta H, Wolff Y, Gurevitz M (2011) Rubisco mutagenesis provides new insight into limitations on photosynthesis and growth in Synechocystis PCC6803. J Exp Bot 62:4173–4182.  https://doi.org/10.1093/jxb/err116 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Paul MJ (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400.  https://doi.org/10.1093/jexbot/52.360.1383 CrossRefPubMedGoogle Scholar
  56. 56.
    Stitt M (1986) Limitation of photosynthesis by carbon metabolism: I. Evidence for excess electron transport capacity in leaves carrying out photosynthesis in saturating light and CO(2). Plant Physiol 81:1115–1122ADSCrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345.  https://doi.org/10.1146/annurev.pp.33.060182.001533 CrossRefGoogle Scholar
  58. 58.
    Tennessen DJ, Bula RJ, Sharkey TD (1995) Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynth Res 44:261–269.  https://doi.org/10.1007/BF00048599 CrossRefPubMedGoogle Scholar
  59. 59.
    Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604.  https://doi.org/10.1016/j.biortech.2010.10.010 CrossRefPubMedGoogle Scholar
  60. 60.
    Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T (2012) Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS One 7:e38975.  https://doi.org/10.1371/journal.pone.0038975 ADSCrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275–1288.  https://doi.org/10.1007/s00253-010-3047-8 CrossRefPubMedGoogle Scholar
  62. 62.
    van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90(4):391–418CrossRefPubMedGoogle Scholar
  63. 63.
    Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227.  https://doi.org/10.1038/nchembio.537 CrossRefPubMedGoogle Scholar
  64. 64.
    Kim Y, Ingram LO, Shanmugam KT (2007) Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl Environ Microbiol 73:1766–1771.  https://doi.org/10.1128/AEM.02456-06 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Talebnia F, Niklasson C, Taherzadeh MJ (2005) Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnol Bioeng 90:345–353.  https://doi.org/10.1002/bit.20432 CrossRefPubMedGoogle Scholar
  66. 66.
    Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8:e1002363.  https://doi.org/10.1371/journal.pcbi.1002363 ADSCrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4:1184–1191.  https://doi.org/10.1038/nprot.2009.97 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    van Iersel MP, Pico AR, Kelder T, Gao J, Ho I, Hanspers K, Conklin BR, Evelo CT (2010) The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services. BMC Bioinformatics 11:5.  https://doi.org/10.1186/1471-2105-11-5 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Khandelwal RA, Olivier BG, Röling WFM, Teusink B, Bruggeman FJ (2013) Community flux balance analysis for microbial consortia at balanced growth. PLoS One.  https://doi.org/10.1371/journal.pone.0064567
  70. 70.
    Zarecki R, Oberhardt MA, Yizhak K, Wagner A, Segal ES, Freilich S, Henry CS, Gophna U, Ruppin E (2014) Maximal sum of metabolic exchange fluxes outperforms biomass yield as a predictor of growth rate of microorganisms. PLoS One.  https://doi.org/10.1371/journal.pone.0098372
  71. 71.
    Hanly TJ, Henson MA (2011) Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng 108:376–385.  https://doi.org/10.1002/bit.22954 CrossRefPubMedGoogle Scholar
  72. 72.
    Vitkin E, Golberg A, Yakhini Z (2015) BioLEGO—a web-based application for biorefinery design and evaluation of serial biomass fermentation. Technology 1–10. doi:  https://doi.org/10.1142/S2339547815400038
  73. 73.
    Vitkin E, Shlomi T (2012) MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biol 13:R111.  https://doi.org/10.1186/gb-2012-13-11-r111 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bikker P, van Krimpen MM, van Wikselaar P, Houweling-Tan B, Scaccia N, van Hal JW, Huijgen WJJ, Cone JW, Lopez-Contreras AM (2016) Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol 1–15. doi:  https://doi.org/10.1007/s10811-016-0842-3
  75. 75.
    van der Burg S, Stulver M, Veenstra F, Bikker P, López-Contreras AM, Palsra A, Broeze J, Jansen H, Jak R, Gerritsen A, Harmsen P, Kals J, Blanco A, Brandenburg W, van Krimen M, van Duijn A, Mulder W, van Raamsdonk L (2013) A triple P review of the feasibility of sustainable offshore seaweed production in the North Sea. Wageningen UR (LEI report 13-077) - ISBN 9789086156528. https://www.wur.nl/en/Publication-details.htm?publicationId=publication-way-343432363338
  76. 76.
    Golberg A, Liberzon A (2015) Modeling of smart mixing regimes to improve marine biorefinery productivity and energy efficiency. Algal Res 11:28–32.  https://doi.org/10.1016/j.algal.2015.05.021 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2018

Authors and Affiliations

  • Alexander Golberg
    • 1
  • Alexander Liberzon
    • 2
  • Edward Vitkin
    • 3
  • Zohar Yakhini
    • 3
  1. 1.Porter School of Environmental StudiesTel Aviv UniversityTel AvivIsrael
  2. 2.School of Mechanical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Computer ScienceTechnionHaifaIsrael

Personalised recommendations